

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 5 77 WEST JACKSON BOULEVARD CHICAGO, IL 60604-3590

June 14, 2019

REPLY TO THE ATTENTION OF

Linda B. Albrecht Midwest ESSD US Army Environmental Command 2450 Connell Road Fort Sam Houston, TX 78234-7664

Subject: U.S. Army Responses to U.S. EPA Comments on the Draft Final Fiscal Year 2018 Annual Performance Report, Twin Cities Army Ammunition Plant

Dear Ms. Albrecht:

The U.S. Environmental Protection Agency (EPA) has received and reviewed the U.S. Army's responses to comments (RTCs) on, including the markup (track changes) version of, the <u>Draft Final Fiscal Year 2018 Annual Performance Report. Twin Cities Army Ammunition Plant</u> (FY18 APR), which was prepared by PIKA/ARCADIS for the Commander, Twin Cities Army Ammunition Plant. The RTCs are accepted. EPA has no additional comments on the FY18 APR.

If you have any questions, or require additional information, please feel free to contact me by phone at (312) 353-5577 or by e-mail (barounis.thomas @ epa.gov).

Sincerely.

Tom Barounis Remedial Project Manager

cc: Amy Hadiaris, MPCA HOA Voscott, PIK-ARCADIS

Twin Cities Army Ammunition Plant

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

New Brighton/Arden Hills Superfund Site

11 June 2019

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

New Brighton/Arden Hills Superfund Site

Prepared for: Commander Twin Cities Army Ammunition Plant 4761 Hamline Avenue ATTN: DAIM-BD-TW Arden Hills, Minnesota 55112

Prepared by: PIKA Arcadis U.S., Inc. (JV) 123 North Third Street Suite 705 Minneapolis Minnesota 55401 Tel 612 339 9434 Fax 612 336 4538

Our Ref.: 10153006.0003

Date: 11 June 2019

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

CONTENTS

Ac	ronyn	ns and Abbreviations	viii
1	Executive Summary1		
2 Introduction		oduction	2-1
	2.1	Purpose	2-1
	2.2	Brief Overview of TCAAP	2-2
	2.3	Hydrogeologic Units and Well Nomenclature	2-2
	2.4	Data Collection, Management, and Presentation	2-3
3	Ope	erable Unit 1: Deep Groundwater	3-6
	3.1	Remedy Component #1: Alternate Water Supply/Well Abandonment	3-7
	3.2	Remedy Component #2: Drilling Advisories	3-9
	3.3	Remedy Component #3: Extract Groundwater	3-10
	3.4	Remedy Component #4: Removal of VOCs by GAC	3-11
	3.5	Remedy Component #5: Discharge of Treated Water	3-12
	3.6	Remedy Component #6: Groundwater Monitoring with Verification of Continuing Aquifer Restoration	3-12
4	Ope	erable Unit 2: Shallow Soil and Dump Sites	4-1
	4.1	Remedy Components #1 through #9: Soil Remediation	4-2
	4.2	Remedy Component #10: Land Use Controls	4-2
5	Operable Unit 2: Deep soil Sites5		5-1
6	Ope	erable Unit 2: Site A Shallow Groundwater	6-1
	6.1	Remedy Component #1: Groundwater Monitoring	6-2
	6.2	Remedy Component #3A: Land Use Controls	6-2
	6.3	Remedy Component #3B: Alternate Water Supply/Well Abandonment	6-3
	6.4	Remedy Component #5: Source Characterization/ Remediation	6-4
	6.5	Overall Remedy for Site A Shallow Groundwater	6-5
7	Ope	erable Unit 2: Site C Shallow Groundwater	7-1
	7.1	Remedy Component #1: Groundwater and Surface Water Monitoring	7-2
	7.2	Remedy Component #2: Groundwater Containment	7-2
	7.3	Remedy Component #3: Discharge of Extracted Water	7-2

	7.4	Remedy Component #4: Land Use Controls	.7-3
	7.5	Overall Remedy for Site C Shallow Groundwater	.7-3
8	Ope	rable Unit 2: Site I Shallow Groundwater	.8-1
	8.1	Remedy Component #1: Groundwater Monitoring	.8-1
	8.2	Remedy Component #2: Additional Investigation	.8-2
	8.3	Remedy Component #3: Land Use Controls	.8-2
	8.4	Overall Remedy for Site I Shallow Groundwater	.8-2
9	Ope	rable Unit 2: Site K Shallow Groundwater	.9-1
	9.1	Remedy Component #1: Groundwater Monitoring	.9-1
	9.2	Remedy Component #2: Sentinel Wells	.9-2
	9.3	Remedy Component #3: Hydraulic Containment	.9-2
	9.4	Remedy Component #4: Groundwater Treatment	.9-3
	9.5	Remedy Component #5: Treated Water Discharge	.9-4
	9.6	Remedy Component #6: Discharge Monitoring	.9-4
	9.7	Remedy Component #7: Additional Investigation	.9-4
	9.8	Remedy Component #8: Land Use Controls	.9-5
	9.9	Overall Remedy for Site K	.9-5
	9.10	Other Related Activity in FY 2018	.9-6
10	Ope	rable Unit 2: Building 102 Shallow Groundwater1	0-1
	10.1	Remedy Component #1: Monitored Natural Attenuation1	0-1
	10.2	Remedy Component #2: Groundwater Monitoring1	0-2
	10.3	Remedy Component #3: Land Use Controls1	0-2
	10.4	Overall Remedy for Building 102 Shallow Groundwater1	0-3
11	Ope	rable Unit 2: Aquatic Sites1	1-1
12	Ope	rable Unit 2: Deep Groundwater1	2-1
	12.1	Remedy Component #1: Hydraulic Containment and Contaminant Removal From the Source	
		Area1	2-2
	12.2	Remedy Component #2: Groundwater Treatment1	2-9
		Remedy Component #3: Treated Water Discharge12	
	12.4	Remedy Component #4: Institutional Controls12	2-10
	12.5	Remedy Component #5: Review of New Technologies12	2-11

	12.6 Remedy Component #6: Groundwater Monitoring	.12-12
	12.7 Overall Remedy for Deep Groundwater	.12-14
	12.8 Other Related Activity in FY 2018	.12-14
13	Operable Unit 3: Deep Groundwater	13-1
	13.1 Remedy Component #1: Monitored Natural Attenuation	13-1
	13.2 Remedy Component #2: Groundwater Monitoring	13-2
	13.3 Remedy Component #3: Drilling Advisories	13-3
	13.4 Overall Remedy for OU3	13-3
	13.5 Other Related Activity in FY 2018	13-4
14	Other Installation Restoration Activities During FY 2018	14-1
	14.1 Round Lake	14-1
15	References	15-1

TABLES

- 1-1 Status of Remedial Actions: FY 2018
- 3-1 Summary of OU1 Monitoring Requirements
- 3-2 OU1 Groundwater Quality Data
- 3-3 Group 1, 2, 3, 5, and 6 Mann-Kendall Summary for OU1
- 6-1 Summary of Site A Shallow Groundwater Monitoring Requirements
- 6-2 Site A Groundwater Quality Data
- 7-1 Summary of Site C Shallow Groundwater Monitoring Requirements
- 7-2 Water Quality Data for Site C Groundwater
- 7-3 Water Quality Data For Site C Surface Water
- 7-4 Contingency Locations for Site C Monitoring
- 8-1 Summary of Groundwater Monitoring Requirements, Fiscal Year 2018, Site I, OU2
- 8-2 Most Recent Groundwater Quality Data (FY 2013), Site I, OU2
- 9-1 Summary of Groundwater Monitoring Requirements, Fiscal Year 2018, Site K, OU2
- 9-2 Groundwater Quality Data, Fiscal Year 2018, Site K, OU2
- 9-3 Groundwater Elevation Monitoring, Fiscal Year 2018, Site K, OU2
- 9-4 Treatment System Concentrations (Organics), Fiscal Year 2018, Site K, OU2

- 9-5 Treatment System Concentrations (Inorganics), Fiscal Year 2018, Site K, OU2
- 9-6 Summary of Monthly VOC Removal, Fiscal Year 2018, Site K, OU2
- 9-7 1,4-Dioxane Groundwater Sampling Results, Fiscal Year 2018, Site K, OU2
- 10-1 Summary of Building 102 Shallow Groundwater Monitoring Requirements
- 10-2 Building 102 Groundwater Quality Data
- 12-1 Groundwater Cleanup Levels, TGRS, OU2
- 12-2 Extraction Well Water Pumped, Fiscal Year 2018, TGRS, OU2
- 12-3 Treatment Center Water Meter Totals, Fiscal Year 2018, TGRS, OU2
- 12-4 Pumphouse Down Time, Fiscal Year 2018, TGRS, OU2
- 12-5 Down Time By Category, Fiscal Year 2018, TGRS, OU2
- 12-6 VOC Mass Loading Summary, Fiscal Year 2018, TGRS, OU2
- 12-7 VOC Concentrations in TGRS Extraction Wells, Fiscal Year 2018, TGRS, OU2
- 12-8 Groundwater Quality Data, Fiscal Year 2018, TGRS, OU2
- 12-9 Summary of OU2 Deep Groundwater Monitoring Requirements, TGRS, OU2
- 12-10 1,4-Dioxane Concentrations in TGRS and Extraction Wells, TGRS, OU2
- 12-11 1,4-Dioxane Groundwater Sampling Results, TGRS, OU2
- 13-1 Groundwater Quality Data, Fiscal Year 2018, Operable Unit 3
- 13-2 Mann-Kendall Statistical Summary, Fiscal Year 2018, Operable Unit 3
- 13-3 Summary of Groundwater Monitoring Requirements, Operable Unit 3
- 13-4 1,4-Dioxane Groundwater Sampling Results, Fiscal Year 2018, Operable Unit 3

FIGURES

- 2-1 Conceptual Illustration of Operable Units
- 2-2 Operable Unit 2 Site Boundaries
- 2-3 Federally Owned Property Within Operable Unit 2
- 3-1 Upper Unit 4, 1 µg/L Trichloroethene Isoconcentration Map
- 3-2 New Brighton Municipal Wells: Trichloroethene Water Quality Trends
- 3-3 OU1 & OU3 Upper and Lower Unit 3 Combined, Trichloroethene and 1,4-Dioxane Isoconcentration Map, Summer 2018
- 3-4 OU1 & OU3 Upper Unit 4, Trichloroethene and 1,4-Dioxane Isoconcentration Map, Summer 2018
- 3-5 OU1 & OU3 Lower Unit 4, Trichloroethene and 1,4-Dioxane Isoconcentration Map, Summer 2018

- 3-6 OU2/OU1 Trichloroethene Cross Section A-A' (North Half)
- 3-7 OU2/OU1 Trichloroethene Cross Section A-A' (South Half)
- 3-8 OU2/OU1 Trichloroethene Cross Section B-B'
- 3-9 Upper Unit 4, 100 µg/L Trichloroethene Isoconcentration Map
- 3-10 OU1 & OU3 Upper Unit 4, Potentiometric Map, Summer 2018
- 3-11 NBCGRS History
- 6-1 Site A Groundwater Monitoring Plan
- 6-2 Site A, Unit 1 Potentiometric Map, June 2018
- 6-3 Site A, Unit 1 Tetrachloroethene Isoconcentration Map, Summer 2018
- 6-4 Site A, Unit 1 cis-1,2-Dichloroethene Isoconcentraion Map, Summer 2018
- 6-5 Site A, Unit 1 cis-1,2-Dichloroethene Plume Comparison
- 665 Site A, cis-1,2-Dichloroethene Cross Sections A, B, C, D
- 6-7 Site A, cis-1,2-Dichloroethene Water Quality Trends: Extraction Wells 1-4
- 6-8 Site A, cis-1,2-Dichloroethene Water Quality Trends: Monitoring Wells
- 6-9 Site A, cis-1,2-Dichloroethene Water Quality Trends: Extraction Wells 5-8
- 6-10 Site A cis-1,2-Dichloroethene Water Quality Trends: Contingency Locations
- 7-1 Site C Monitoring Plan
- 7-2 Site C, Unit 1, Potentiometric Map, June 2018
- 7-3 Site C, Unit 1, Lead Results, Summer 2018
- 7-4 Site C Cross Section A-A'
- 7-5 Site C Cross Section B-B'
- 7-6 Dissolved Lead
- 8-1 Site Plan, Site I, OU2
- 8-2 Geological Cross Section A-A', Site I, OU2
- 8-3 Trichloroethene and Vinyl Chloride Concentrations FY 2013, Site I, OU2
- 9-1 Site Plan, Site K, OU2
- 9-2 Groundwater Contours, Unit 1, June 2018, Site K, OU2
- 9-3 Hydrogeologic Cross Section A-A', June 2018 (Q131), Site K, OU2
- 9-4 Trichloroethene Concentrations, Unit 1, June 2018, Site K, OU2
- 9-5 VOC Concentrations Over Time, Well 01U615, Site K, OU2
- 10-1 Location of Building 102

- 10-2 Building 102, Unit 1, Potentiometric Map, June 2018
- 10-3 Building 102, Unit 1, Trichloroethene Results, Summer 2018
- 10-4 Building 102, Unit 1, cis-1,2-Dichloroethene Results, Summer 2018
- 10-5 Building 102, Unit 1, Vinyl Chloride Results, Summer 2018
- 10-6 Building 102 Vinyl Chloride Cross Section A-A'
- 11-1 OU2 Aquatic Sites and Sampling Locations
- 12-1 TGRS Layout, Operable Unit 2
- 12-2 TGRS FY2017 Total Daily Flow Rates, Operable Unit 2
- 12-3 OU2, Upper Unit 3, Potentiometric Map, June 2018, Operable Unit 2
- 12-4 OU2, Lower Unit 2, Potentiometric Map, June 2018, Operable Unit 2
- 12-5 OU2, Upper Unit 4, Potentiometric Map, June 2018, Operable Unit 2
- 12-6 TGRS Treatment System Performance, Operable Unit 2
- 12-7 OU2, Upper and Lower Unit 3 Combined, Tricholorethene and 1,4-Dioxane Isoconcentration Map, Summer 2018
- 12-8 OU2, Upper Unit 4, Trichloroethene and 1,4-Dioxane Isoconcentration Map, Summer 2018
- 12-9 OU2, Lower Unit 4, Trichloroethene and 1,4-Dioxane Isoconcentration Map, Summer 2018
- 12-10 June 2018, Groundwater TRCLE Data, Cross Section C-C', Operable Unit 2
- 12-11 June 2018, Groundwater TRCLE Data, Cross Section C'-C", Operable Unit 2
- 12-12 TGRS Annual Monitoring Data West Portion, TRCLE Concentrations (μg/L) June 2018, Operable Unit 2
- 12-13 TGRS Annual Monitoring Data West Portion, 1,4-Dioxane Concentrations (μg/L) June 2018, Operable Unit 2
- 12-14 June 2018, Groundwater 1,4-Dioxane Data, Cross Section C-C', Operable Unit 2
- 12-15 June 2018, Groundwater 1,4-Dioxane Data, Cross Section C'-C", Operable Unit 2
- 13-1 Site Plan, Operable Unit 3

APPENDICES

- Appendix A FY 2018 FY 2022 Monitoring Plans
 - A.1 Groundwater Monitoring Wells
 - A.2 Remedial Treatment Systems
 - A.3 Surface Water

A.4 Si	te Specific	Lists o	of Required	Analytes
--------	-------------	---------	-------------	----------

- A.5 New Brighton Operating Rates
- Appendix B FY 2018 Well Index
- Appendix C FY 2018 Data Collection and Management
 - C.1 Data Collection, Management, and Presentation
 - C.2 Deviations from Monitoring Program
 - C.3 Regulatory Approvals of Data Usability Reports
- Appendix D Comprehensive Groundwater Quality and Groundwater Level Databases
 - D.1 Comprehensive Groundwater Quality and Groundwater Level Databases
 - D.2 Operable Unit 1 Statistical Analysis
 - D.2.1 Well Group and Statistical Evaluation Criteria Tables
 - D.2.2 Group 1, 2, 3, 5, and 6 Mann-Kendall Evaluations
 - D.2.3 Group 6 New Brighton Municipal Well Regression Analysis
- Appendix E Well Inventory Update, FY 2018
- Appendix F Annual Site Inspection Checklist for Land Use Controls
- Appendix G Site K and TGRS Operational Data
 - G.1 Inspection and Maintenance Activities, Fiscal Year 2018, Site K, OU2
 - G.2 Maintenance Activities, Fiscal Year 2018, TGRS, OU2
 - G.3 Maintenance Activities by Location, Fiscal Year 2018, TGRS, OU2
- Appendix H TGRS Chemical Data
 - H.1 TGRS Extraction Wells Trichloroethene vs. Time
 - H.2 Influent/Effluent Database, Fiscal Year 2018, TGRS, OU2
- Appendix I Maros Decision Matrix

ACRONYMS AND ABBREVIATIONS

APR	Annual Performance Report
AOP	Advanced Oxidation Potential
Army	United States Army
AS	air sparging
Barr	Barr Engineering
BGRS	Boundary Groundwater Recovery System
BRAC	Base Realignment and Closure Division
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
cis-1,2-DCE	cis-1,2-dichloroethene
COC	contaminant of concern
CRA	Conestoga-Rovers & Associates, Inc. (now GHD)
DNAPL	dense non-aqueous phase liquid
EBS	Environmental Baseline Survey
EE/CA	Engineering Evaluation/Cost Analysis
ESA	Environmental Site Assessment
ESD	Explanation of Significant Difference
EW	extraction well
FFA	Federal Facility Agreement
FS	feasibility study
FY	fiscal year
GAC	granular activated carbon
GOS	TGRS Global Operation Strategy
gpm	gallons per minute
HRL	Health Risk Limits
JV	PIKA Arcadis U.S., Inc. a Joint Venture
LUC	land use control
LUCRD	land use control remedial design
MCL	Maximum Contaminant Level
MCLG	Maximum Contaminant Level Goal

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

MDH	Minnesota Department of Health
MNA	monitored natural attenuation
MOS	TGRS Micro Operation Strategy
MNARNG	Minnesota Army National Guard
MPCA	Minnesota Pollution Control Agency
MW	monitoring well
NB/AH	New Brighton/Arden Hills
NBCGRS	New Brighton Contaminated Groundwater Recovery System
NBM	New Brighton Municipal
NPL	National Priorities List
OM	Operational Minimum
OS	TGRS Operating Strategy
OU	Operable Unit
OU1	Operable Unit 1
OU2	Operable Unit 2
OU3	Operable Unit 3
OU1TG	OU1 Technical Group
PCE	tetrachloroethene
PGAC	permanent granular activated carbon
PGRS	Plume Groundwater Recovery System
PLC	programmable logic controller
PM	preventative maintenance
POTW	Publicly-Owned Treatment Works
ΡΤΑ	Primer/Tracer area
QAPP	Quality Assurance Project Plan
QC	quality control
ROD	Record of Decision
RPD	Relative Percent Difference
scfm	standard cubic feet per minute
SDWA	Safe Drinking Water Act
Shaw	Shaw Environmental & Infrastructure, Inc. (formerly Stone & Webster)

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

SVE	soil vapor extraction
SWBCA	special well boring and construction area
SWCA	special well construction area
TCAAP	Twin Cities Army Ammunition Plant
TCE/TRCLE	trichloroethene
TGRS	TCAAP Groundwater Recovery System
USACHPPM	US Army Center for Health Promotion & Preventive Medicine
USEPA	United States Environmental Protection Agency
UV	Ultra Violet
VOC	volatile organic compound
Wenck	Wenck Associates, Inc.
WWP	Wet Well Pump
µg/L	micrograms per liter

1 EXECUTIVE SUMMARY

This Fiscal Year (FY) 2018 Annual Performance Report (APR) summarizes the status of remedy implementation, and addresses how the remedies are performing, for each of the three operable units related to the New Brighton/Arden Hills (NB/AH) Superfund Site. Figure 2-1 shows the approximate locations of the three operable units (OUs). FY 2018 is defined as the period from October 1, 2017 through September 30, 2018.

Records of Decision (RODs) have been signed for each of the three OUs:

- OU1 ROD signed 1993, Amended 2006;
- OU2 ROD signed 1997, Amended 2007, 2009, 2012, and 2014; and
- OU3 ROD signed 1992, Amended 2006.

The RODs, and subsequent Amendments and Explanations of Significant Differences (ESDs), present the major components of the final remedies for the media of concern. This report looks at each of the major components and addresses:

- 1. Are the remedies being implemented? (Compliance check with the RODs and ROD Amendments)
- 2. Are the remedies doing what they are supposed to?

Table 1-1 summarizes the status of remedial actions at the end of FY 2018. Following are highlights of the accomplishments for each OU, as well as other activities during FY 2018.

Operable Unit 1 (OU1)

OU1 consists of the "north" plume of volatile organic compound (VOC) groundwater contamination. The final remedy for OU1 consists of pumping from six municipal wells (New Brighton Municipal [NBM] wells NBM #3, #4, #5, #6, #14, and #15), treating the extracted groundwater through the Permanent Granular Activated Carbon (PGAC) system, and discharging the treated water to the New Brighton water supply system for distribution as potable water. Routine OU1 remedy pumping was ceased on April 15, 2015, with notice to the United States Environmental Protection Agency (USEPA)/Minnesota Pollution Control Agency (MPCA), due to detection of 1,4-dioxane in the Prairie du Chien and Jordan Aquifer municipal wells. Since the PGAC does not remove 1,4-dioxane, a "remedy time-out" was placed and New Brighton switching to preferential extraction from deep aquifer wells while evaluating removal technologies. In early summer 2016 New Brighton switched to the City of Minneapolis water system (Mississippi River). Other remedy components include providing alternate water supply and/or well abandonment to affected private wells, and drilling advisories for new well construction. Highlights for FY 2018 are:

- A new treatment technology using Ultraviolet (UV)/Peroxide Advanced Oxidation Process (AOP) was selected during a pilot study in 2015-2016 to remove both VOCs and 1,4-dioxane. Upgrades (including implementation of a full scale AOP system) October. A formal change to the Comprehensive Environmental Response, Compensation, and Liability Act remedy regarding AOP treatment is still required.
- The Minnesota Department of Health (MDH) Special Well Construction Area (SWCA) remains in effect. The MDH has the regulatory responsibility to assure that wells constructed in the advisory area

meet appropriate well construction and human health requirements. In FY 2018, there were no new recommendations for abandonment or alternate water supply.

Operable Unit 2 (OU2)

OU2 is defined as the area occupied by Twin Cities Army Ammunition Plant (TCAAP) in 1983, when the NB/AH Superfund Site was placed on the National Priorities List. The remedial action requirements were set forth in the OU2 ROD (1997), ROD Amendment #1 related to Site C-2 (2007), ROD Amendment #2 related to Site I groundwater (2009), ROD Amendment #3 related to various soil sites (2009), ESD #1 related to groundwater (2009), ESD #2 related to various soil sites (2009), ROD Amendment #4 related to Building 102 shallow groundwater, aquatic sites, and various soil sites (2012), and ROD Amendment #5 related to various soil sites (2014). Highlights for activities within OU2 during FY 2018 are:

- Shallow Soil Sites: No activities other than ongoing United States Army (Army) implementation of land use controls (LUCs).
- Deep Soil Sites: No activities other than ongoing Army implementation of LUCs.
- Site A Shallow Groundwater
 - In accordance with the Site A Shallow Groundwater: 10-Year Evaluation Report (Wenck Associates [Wenck] 2008a), and with regulatory approval, the groundwater extraction system was shut down on September 24, 2008 to evaluate monitored natural attenuation (MNA) through abiotic degradation as a potential remedy component in lieu of groundwater extraction and discharge. The groundwater system has remained in stand-by mode in case MNA does not adequately control plume migration and one or more extraction wells need to be restarted. In late 2015, following review of FY 2015 groundwater monitoring results, MNA was deemed an acceptable remedy by the USEPA and MPCA. The Army, USEPA, and MPCA drafted a ROD amendment in FY 2017 to document the change in this remedy component. Formal approval of the ROD amendment was received during FY 2018.
 - Monitoring results from three of the four contingency wells located along the north side of County Road I did not exceed the approved trigger levels, which are equal to the cleanup levels for all Site A contaminants of concern. Well 01U902 exceeded the trigger level in FY 2018 and actions are presented in Section 6.5.
 - The MDH SWCA remains in effect. In FY 2018, there were no locations identified in need of well abandonment or alternate water supply.
- Site C Shallow Groundwater
 - In accordance with the Site C Groundwater Extraction System Evaluation Report (Wenck 2008c), and with regulatory approval, the groundwater extraction system was shut down on November 13, 2008. System operation ceased because the lead concentrations in the groundwater plume contacting extraction wells are now below groundwater cleanup levels.
 - Only monitoring wells located near the source area still exceeded the groundwater cleanup level for lead in FY 2018.
 - None of the groundwater contingency locations exceeded the approved lead trigger levels in FY 2018.

- Continued monitoring is recommended with follow-up discussions to evaluate formal changes to the remedy to eliminate the groundwater extraction component.
- Site I Shallow Groundwater
 - All Site I Unit 1 monitoring wells abandoned in FY 2014 to allow demolition of building 502 and related soil cleanup activities by Ramsey County; therefore, no new groundwater quality data are available to evaluate.
 - Previous investigations show Unit 1 groundwater is discontinuous and does not extend beyond Site I; rather, Unit 1 impacts migrate downward into Unit 3, which is hydraulically influenced by TCAAP Groundwater Recovery System (TGRS) operation.
 - Monitoring well 01U667 will be reinstalled following redevelopment related grading to occur in the area. The well was scheduled to be reinstalled in 2017 but was delayed due to the extent of grading to be completed. The well will be reinstalled upon completion of the regrading and related construction at the Site.
- Site K Shallow Groundwater
 - The Site K groundwater extraction trench and treatment system continued to operate as designed. For FY 2018, the system captured and treated 4,667,972 gallons of water and maintained a continuous zone of capture downgradient of the former Building 103. A total of 7.9 pounds of VOCs were removed in FY 2018.
 - Groundwater samples were collected from all eight wells scheduled for sampling in FY 2018. With the exception of relatively stable trichloroethene (TCE) concentrations in 01U615, the overall trend throughout Site K Unit 1 monitoring wells continues to show a gradual decrease in TCE concentrations over the last twenty plus years of sampling.
 - The extracted water was treated and discharged to Rice Creek in compliance with discharge criteria.
 - Fifteen Unit 1 wells at Site K were abandoned as part of redevelopment activities in FY 2014; three of these wells are scheduled to be reinstalled upon the completion of the regrading and related construction. One Unit 1 Site K well was abandoned in FY 2017 as part of redevelopment activities and will not be reinstalled.
- Building 102 Shallow Groundwater
 - VOC concentrations were generally similar to those observed in the prior year.
 - The well adjacent to Rice Creek continued to show shallow groundwater discharging to Rice Creek below the Site cleanup levels.
 - Monitoring wells were sampled to confirm the FY 2017 results which suggested 1,4-dioxane is not present in Building 102 shallow groundwater. The FY 2017 sampling results were consistent with the FY 2015 and FY 2016 results for 1,4-dioxane, except at well 01U048, where 1,4-dioxane was detected at 1.1 micrograms per liter (µg/L), which is above the MDH Health Risk Limit (HRL). There were no detections of 1,4-dioxane in Building 102 shallow groundwater in FY 2018.
- Aquatic Sites: No activities other than ongoing discussion of Round Lake.
- Deep Groundwater

- The TGRS operated in accordance with the OU2 ROD.
- o The TGRS operated at a rate sufficient to support the conclusion that the OU2 5 µg/L TCE source area footprint is hydraulically influenced respective of the OU2 ROD. In FY 2018, the total extraction well water pumped averaged 1,746 gallons per minute (gpm), which exceeds the Global Operation Strategy (GOS) Operating Minimum (OM) (1,745 gpm). In March, April, May, June, July, and September 2018, the TGRS extraction rate was less than the GOS minimum due to communication issues between the programmed logic controller (PLC) and Building 116. The communication line was damaged during construction in the fall of 2017.
- In FY 2018, the TGRS extracted and treated approximately 917,437,500 gallons of water. The mass of VOCs removed was 1,911 pounds, 77 pounds less than FY 2017. The total VOC mass removed by the TGRS through FY 2018 is 218,660 pounds.
- Groundwater analytical data shows a continued general decrease in TCE concentration. This decrease demonstrates that the TGRS is removing VOC mass from the aquifer.
- Effluent VOC concentrations were below contaminant specific requirements for all sampling events.
- Sampling for 1,4-dioxane continued in FY 2018. Sample results were similar to that reported in FY 2015, FY 2016, and FY 2017.

Operable Unit 3 (OU3)

OU3 contains the South Plume of VOC groundwater contamination. Overall, the statistical evaluation of groundwater data collected in FY 2018 indicates stable to declining concentration trends at the center and edge of the South Plume. 1,4-dioxane sampling continued in FY 2018 with results similar to FY 2015, FY 2016, and FY 2017.

Other Investigation and/or Remediation Activities Not Prescribed by a Current ROD

- Round Lake Supplemental Remedial Investigation and Feasibility Study
 - After a series of conference calls held in attempt to resolve the informal dispute between the Army, USEPA, and MPCA regarding Round Lake ecological risks and commensurate remedy, the USEPA Region 5 Federal Facilities Chief and Headquarters Department of Army personnel reached an agreement on September 20, 2016. Per the agreement, a revised Final Supplemental Remedial Investigation and Feasibility Study for Round Lake was prepared and submitted to the USEPA and MPCA on September 7, 2018. After formal regulatory approval, the Draft Final Proposed Plan will be submitted followed by a public meeting and Draft Final ROD.

2 INTRODUCTION

2.1 Purpose

The Annual Performance Report (APR) is intended to both summarize the status of remedy implementation and address remedy performance. For FY 2018, remedial actions at the New Brighton/Arden Hills (NB/AH) Superfund (Site) extend from October 1, 2017 through September 30, 2018. Additionally, the NB/AH Site is divided into three designated Operable Units: (OU)1, OU2, and OU3 (Figure 2-1). OU1 encompasses off-site deep groundwater sometimes referred to as the North Plume. OU2 includes soil, sediment, surface water, and groundwater contamination in the area that comprised the Twin Cities Army Ammunition Plant (TCAAP) in 1983, when the NB/AH Site was placed on the National Priorities List (NPL). OU2 also includes the Site A groundwater plume that extends off the north end of the federally-owned property. OU3 consists of off-site deep groundwater sometimes referred to as the South Plume. A Record of Decision (ROD) was developed and signed for each OU:

- OU1 ROD signed 1993, Amended 2006;
- OU2 ROD signed 1997, Amended 2007, 2009, 2012, and 2014; and
- OU3 ROD signed 1992, Amended 2006.

The RODs, subsequent Amendments, and Explanations of Significant Differences (ESDs) present the major components of the final remedies for the media of concern. Monitoring activities and submittal of this APR are in fulfillment of the Federal Facility Agreement (FFA) signed in 1987 by the United States Army (Army), United States Environmental Protection Agency (USEPA), and Minnesota Pollution Control Agency (MPCA) with performance assessment answered via two questions:

1. Are all of the remedies being implemented? (Compliance check with the RODs)

2. Are the remedies performing as required?

For each OU, this APR answers the questions posed above by evaluating the major components of the selected remedies of each ROD (and subsequent modifications). Performance standards are then presented for each major remedy component and subsequently used to evaluate successful implementation or completeness. For some remedy components, performance standards are clearly defined in the RODs (soil or groundwater cleanup levels). For others (alternate water supply) performance standards are less clear but may have been agreed within Work Plans or design documents. With performance standards identified, the APR then addresses both questions discussed above through a series of sub-questions, written to facilitate a focused and user-friendly document promoted, as possible, in the form of figures and/or graphs.

In addition to reporting on FY 2018, proposed future monitoring is also presented (Appendix A), with proposed changes in monitoring locations and/or sampling frequencies highlighted in yellow. Monitoring covers a rolling 5-year time span (i.e., currently FY 2018 through FY 2022 where next year FY 2018 will drop off and FY 2023 will be added).

This document represents collaboration by the Army and Northrop Grumman Innovation Systems (Northrop Grumman; formerly Orbital ATK). On behalf of the Army, PIKA Arcadis U.S., Inc., a Joint

Venture (JV) prepared Sections 2 through 7, 10, 11 and 14. On behalf of Northrop Grumman, GHD (formerly Conestoga-Rovers & Associates, Inc. [CRA]) prepared Sections 8, 9, 12 and 13. JV and GHD both contributed to the Executive Summary.

2.2 Brief Overview of TCAAP

TCAAP was constructed between August 1941 and January 1943 in the northern portion of the Minneapolis – St. Paul metropolitan area, in Ramsey County, surrounded by the cities of New Brighton, Arden Hills, Mounds View, and Shoreview, Minnesota (Figure 2-1). TCAAP primarily produced and proof-tested small-caliber ammunition and related materials for the Army. Other uses included manufacture of munitions-related components, handling/storage of strategic and critical materials for other government agencies, and various non-military activities. Production began in 1942, and operations alternated between periods of activity and standby related to wars until manufacturing ceased in 2005. During active periods, solvents were used as part of some manufacturing operations. Disposal of solvents and other wastes resulted in soil and groundwater contamination that migrated beyond the original TCAAP boundary.

Groundwater impacts were first discovered in July 1981, leading to soil and groundwater investigations on and off-Site. In 1983, it was determined the source of impacts and other areas of affected groundwater contamination were from TCAAP, which was placed on the NPL denoted as the NB/AH Superfund Site.

Several known and potential contaminant source areas on the TCAAP property were initially identified within OU2: Sites A, B, C, D, E, F, G, H, I, J, K, 129-3, 129-5, and 129-15 (Figure 2-2). The 1997 OU2 ROD specified requirements for each site except Site F (which was addressed under the Resource Conservation and Recovery Act prior to 1997) and Site J (a sewer line determined not to have a contamination release). Additionally, other areas have also undergone investigation and/or remediation, namely the Grenade Range, Outdoor Firing Range, Trap Range, 135 Primer/Tracer Area (PTA) (and adjacent stormwater ditch), 535 PTA, Water Tower Area, Environmental Baseline Survey (EBS) Areas, and Building 102. These areas are also shown on Figure 2-2.

Since 1983 the size of TCAAP has periodically shrunk due to property transfers. Some property has been transferred out of federal-ownership to Ramsey County and the City of Arden Hills. Other property is still owned by the federal government, but control has been reassigned to the Army Reserve or the National Guard Bureau, which has licensed property to the Minnesota Army National Guard (MNARNG). Figure 2-3 presents property under federal ownership at the end of FY 2018, along with the organizations responsible for control. The minimal remaining TCAAP (BRAC-controlled) property is currently in the process of being transferred out of federal ownership. It is likely that within the next few years, there will no longer be an organization or property called TCAAP. These property transfers do not alter the responsibilities of the Army under the FFA.

2.3 Hydrogeologic Units and Well Nomenclature

For purposes of studies and work related to the NB/AH Superfund Site, four hydrogeologic units have been designated: Unit 1 through Unit 4, described in Appendix B, along with well designation nomenclature overview. A well-designation cross-reference guide is included in Table B-1 within Appendix B. The well index includes all Army owned or used wells to gather groundwater elevation or water quality data, sorted by Minnesota unique number. Well information includes the Army designation (Installation Restoration Data Management Information System number), Minnesota unique number, and any other name(s). Well locations included in the monitoring plan are shown on Figure B-2 (OU1/OU3 wells) and Figure B-3 (OU2 wells) in Appendix B. With a known well name, the location can be identified using the "Edit, Find" or "Edit, Search" function and typing in the well name, which will highlight the desired well name on the figure. Available information concerning a well, including well logs and other information, can be viewed in the Appendix B Attachment, which is sorted by the Minnesota unique number. See instructions in Appendix B for more information.

2.4 Data Collection, Management, and Presentation

Performance monitoring data were collected in accordance with the FY 2018: Monitoring Plan for Groundwater Monitoring Wells, Monitoring Plan for Remedial Treatment Systems, Monitoring Plan for Surface Water and New Brighton Water System Sampling and Analysis Plan. Data were collected by the JV on behalf of the Army, GHD on behalf of Orbital ATK, and Barr Engineering (Barr) on behalf of the City of New Brighton. Data collection, management, and presentation are discussed in Appendix C. Lastly, comprehensive groundwater levels and quality databases from 1987 through FY 2018 are contained in Appendix D.1.

Are the data complete and representative (are we making decisions based on complete and technically-sound information)?

Yes. The data were collected in accordance with the FY 2018 Monitoring Plan and verified and validated in accordance with the Quality Assurance Project Plan (QAPP) for Performance Monitoring (Pika-Arcadis JV 2016), which is updated as appropriate.

Data tables in the various report sections and the comprehensive water quality databases (Appendix D.1) show the assigned data qualifiers as a result of data verification and/or data validation. The data qualifiers assigned to FY 2018 data are explained in the data table footnotes. Data verification (performed on 100% of the data) and data validation (performed on 100% of 1,4-dioxane data and a minimum of 10% of the data, except at Site K) were provided to the USEPA and MPCA via submittal of quarterly Data Usability Reports covering FY 2018 information. The final MPCA/USEPA approval letter for the FY 2018 Data Usability Reports is included in Appendix C.3.

Regarding completeness, Appendix C.2 summarizes any deviations from the FY 2018 Monitoring Plan. The emergence of 1,4-dioxane in 2015 prompted substantial changes in FY 2016, which continues to be carried over. The field and laboratory completeness goals for performance monitoring are both 95%, except for TCAAP Groundwater Recovery System (TGRS) effluent, Site K effluent, and well inventory samples, for which field and laboratory completeness goals are 100%. Aside from two wells that were not operational and therefore not able to be sampled, actual field and laboratory completeness were both 100%, meeting overall completeness goals (dry, frozen, or inoperative wells were not considered as missed samples, nor owner nonresponsive or refused sample collection). Also, the actual field and laboratory completeness goals was successful at 100%.

Regarding Quality Control (QC) samples, the QAPP specifies field duplicates, equipment rinse blanks, and matrix spike/matrix spike duplicates are to be collected at overall frequencies of 10%, 10%, and 5%

respectively. Actual QC sample frequencies met these goals, with the exception of equipment rinse blanks, with respective frequencies of 12%, 9% and 6%.

With regard to data validation, the performance monitoring QAPP specifies that data validation be completed at an overall rate of 10%, with 100% validation of 1,4-dioxane data and well inventory samples. The actual validation rate for VOCs far exceeded 10%, and all data requiring 100% data validation were fully validated, meeting the specified validation rates for performance monitoring.

FY 2018 data are deemed to be representative and meet data quality objectives based on: 1) adherence to QAPP-specified sampling and laboratory analytical procedures; 2) completion of data verification and data validation; and 3) comparability to historical results (any substantial deviations from historical and/or anticipated results are discussed within the site-specific sections of this APR).

The wells sampled by the JV on behalf of the Army during the FY 2018 annual sampling were sampled using standard purge methods and a new method in OU1: OU1 wells were sampled via no-purge methodology using a HydraSleeve[™] and OU2 wells were sampled using a peristaltic pump and low-flow methodology. Historically, all wells were sampled using the standard purge method which is time consuming, creates large amounts of purge water, and requires field staff to deploy heavy pumps, posing an unnecessary health and safety risk. A side-by-side comparison study was conducted with at least 5% of wells in each OU being sampled using both the standard purge method and the low or no method. In total, 14 wells were comparison sampled during the FY 2018 event. All sampling equipment, including submersible pumps, tubing influent, and HydraSleeves[™], were positioned in the midpoint of the screen or open interval. OU1 wells were first sampled using standard purge methodology. Then a HydraSleeve[™] was deployed and left in the well for at least 72 hours while the well equilibrated. Shallow groundwater methodologies were not conducted in a specific order as both methods pull water directly from the formation. All sampling was performed in accordance with applicable standard operating procedures and QAPP guidance.

Relative Percent Difference (RPD) was selected as the point of comparison using the following equation:

 $RPD = \frac{concentration \ by \ standard \ purge - concentration \ by \ new \ method}{average \ of \ concentrations \ by \ standard \ purge \ and \ new \ methods}$

A 35% RPD is considered the industry standard for duplicates and was therefore used to determine whether the new methods provided similar analytical results. If a comparison was above the 35% RPD threshold, historical analytical trends, contaminant of concern (COC) concentrations, and quality of the well were considered. A number of wells in the comparison study have COC concentrations below 5 μ g/L; RPD results above 35% are still considered acceptable for these wells and are evaluated on an individual basis, as it often represents a difference of only 1 to 2 μ g/L. 83% of constituent pairs with COC concentrations above 5 μ g/L had RPD results below 35%.

Of the 14 wells sampled, six wells had all constituents below 35% RPD: 01U139, 01U584, 04J847, 04J849, 04U849, and 409550. Analytical results and RPD calculations are presented on Table 2-1. Wells 01U563, 03L822, and 03L841 have COC concentrations below 5 μ g/L and therefore the RPD is not representative of a significant difference in results between the previous and new sampling methods. Wells 01U355 and 04U843 had RPD results greater 35%; however, the new method yielded higher COC concentrations than the previous method. This is likely due to the standard purge method mixing impacted and non-impacted groundwater and resulting in a diluted sample.

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

Well 04U847 had RPD results ranging from 38% to 99%. This well is known to have a caved-in interval, which leaves only 7 feet of open interval accessible for sampling. Over 60 feet of open interval is below the bedrock bridge. Given that 04U847 is the most impacted well in OU1, it is recommended that the well be repaired so the remainder of the formation is accessible for sampling. This well will continue to be sampled using stand purge methodology and no-purge sampling will be revisited as an option if the well is repaired.

94% of constituent pairs have either COC concentrations above 5 µg/L, the new method yielded more conservative analytical results, or the RPD results are below 35%. Therefore HydraSleeve[™] and low-flow sampling are deemed acceptable methods for sampling, with the exception of 04U847 which will continue to be sampled using the standard purge method.

3 OPERABLE UNIT 1: DEEP GROUNDWATER

The 1993 OU1 ROD was amended in 2006 to formalize adoption of groundwater quality statistical analysis. Primary elements of the OU1 ROD are as follows (amendment changes in italics):

- 1. Providing alternate water supplies to residents with private wells within the North Plume.
- 2. Implementing drilling advisories that would regulate the installation of new private wells within the North Plume as a Special Well Construction Area (SWCA).
- 3. Extracting groundwater from the North Plume using the New Brighton Contaminated Groundwater Recovery System (NBCGRS), subject to the following:
 - a. the initial aggregate groundwater extraction rate shall be consistent with long-term NBCGRS operating history;
 - b. future decreases in the aggregate extraction rate shall be determined by the Army, USEPA, and MPCA using a transparent public process and rational engineering, scientific, and economic analyses at least as rigorous as those employed in the Feasibility Study (FS) that was the basis for the original remedy selection;
 - c. future changes to the aggregate or individual well extraction rates shall be made to assure that the rate of restoration of the aquifer will not be slowed or result in a duration of remedy longer than was contemplated by the original ROD;
 - d. future changes to the aggregate or individual well extraction rates shall be made to assure that the rate of restoration of the aquifer will not be slowed or result in a duration of remedy longer than was contemplated by the original ROD;
- 4. Future changes to the aggregate or individual well extraction rates shall be made to assure that the rate of restoration of the aquifer will not be slowed or result in a duration of remedy longer than was contemplated by the original ROD Pumping the extracted groundwater to the permanent granular activated carbon (PGAC) Water Treatment Facility in New Brighton for removal of volatile organic compounds (VOCs) by a pressurized granular activated carbon (GAC) system.
- 5. Discharging all treated water to the New Brighton municipal distribution system.
- 6. Monitoring the groundwater to verify effectiveness of the remedy through measurement of overall plume shrinkage (geographically) and decreasing contaminant concentrations.

Requirement No. 6 is met by evaluating analytical groundwater data according to statistical methods contained in the OU1 Technical Group Technical Memorandum Statistical Evaluation Method for Water Quality Data, Operable Unit 1, dated December 2004 (and any subsequent addendums or revisions approved by the USEPA and MPCA). The statistical analysis is conducted annually and is reported in the APR.

The OU1 remedy encountered a new and substantial issue in FY 2015 that has continued to affect remedy performance. In early 2015, the City of New Brighton was notified by the Minnesota Department of Health (MDH) that an emerging contaminant, 1,4-dioxane, had been detected in New Brighton's water supply (with detections up to 6.8 micrograms per liter [μ g/L]). The NBCGRS wells extract groundwater from the Prairie du Chien and/or Jordan Aquifers (Upper and Lower Unit 4). Concentrations of 1,4-dioxane in samples collected from New Brighton's deeper municipal wells (Mount Simon Aquifer) were

non-detect. Currently, no 1,4-dioxane federal drinking water standard exists; however, a state MDH Health Risk Limit (HRL) of 1 μ g/L is in place, with most of the 1,4-dioxane concentrations in samples collected from the NBCGRS exceeding the MDH HRL. A 'remedy time-out' was placed, ceasing NBCGRS operation on April 15, 2015. The City switched to preferential extraction from deep aquifer wells while evaluating removal technologies. A pilot study report for Advanced Oxidation Technology for treatment of 1,4-dioxane was completed in August 2016.

A preliminary design review was held with the Army and Regulators in December 2016. Barr Engineering was awarded a contract in May 2017 and began the design process for installation of Ultraviolet Reactor(s) to treat 1,4-dioxane at the NBCGRS. A new treatment technology using UV/Peroxide Advanced Oxidation Potential was selected for pilot study in 2017, with upgrades to the New Brighton water treatment plant completed in November 2018 when pumping from six municipal wells was restarted. The six major components of the remedy prescribed by the amended ROD are evaluated below, including discussion of the effects of the remedy time-out noted above.

3.1 Remedy Component #1: Alternate Water Supply/Well Abandonment

Description: "Providing an alternative water supply to residents with private wells within the North Plume." (OU1 ROD, page 2)".

- Clarified by the OU1 Alternate Water Supply Plan (Montgomery Watson 1995) to delete "residents with" because the remedy applies to other wells in addition to residential wells. The plan also lists the criteria for identifying the wells that are eligible for an alternate water supply.
- Clarified by the OU1 Alternate Water Supply Plan to also include well abandonment.
- Clarified by the *OU1 Alternate Water Supply Plan* (page i-2) to also encompass OU3 and the OU2 Site A shallow groundwater plume.

Performance Standard (how do you know when you're done):

For alternate water supply, when the owners of all wells that meet all the following criteria have been offered and provided with an alternate water supply (or when the well owners have rejected the offers):

- i. The well is located within the area affected by groundwater plumes that originate at OU2, as shown on Figures E-1, E-2 and E-3 in Appendix E; and
- ii. The well is completed in an affected aquifer; and
- iii. The well contains detectable concentrations of the NB/AH Superfund Site-related COCs identified on page 18 of the OU1 ROD (or page 26 of the OU3 ROD, or Table 1 of the OU2 ROD, as appropriate for the well location); and
- iv. The well is used in a manner to cause exposure (uses are defined in the OU1 Alternate Water Supply Plan); and
- v. The well owner does not already have an alternate water supply.

If eligible well owners refuse the offer to have an alternate water supply provided, this also satisfies the performance standard.

For well abandonment, when the owners of <u>all</u> wells that meet all the following criteria have been offered and provided abandonment (or when the well owners have rejected the offers):

- i. The well is located within the area affected by groundwater plumes that originate at OU2; and
- ii. The well is completed in an affected aquifer; and
- iii. The well contains detectable concentrations of the NB/AH Superfund Site-related COCs identified on page 18 of the OU1 ROD (or page 26 of the OU3 ROD, or Table 1 of the OU2 ROD, as appropriate for the well location); and
- iv. The well was constructed prior to the MDH SWCA advisory; and
- v. The well is being used by the well owner or use was discontinued due to contamination; and
- vi. The well is used in a manner to cause exposure (uses are defined in the Alternate Water Supply Plan).

If eligible well owners refuse the offer for abandonment, this also satisfies the performance standard. An exception to abandonment would be if the well is needed for groundwater monitoring.

Also, note that per Appendix E, program requirements for both alternate water supply and well abandonment have been clarified such that a well should contain a cleanup level exceedance (or an additivity of 1.0, similar to the MDH Hazard Index calculation), rather than merely "detectable concentrations" as noted above. On a case-by-case basis, review by the Army, USEPA, and MPCA could lead to an Army offer for alternate water supply and/or well abandonment for a given well with detectable concentrations that do not exceed a cleanup level (or additivity criteria), particularly if that well is used to supply drinking water.

Is this remedy component being implemented?

Yes. The Alternate Water Supply and Well Abandonment Program has been implemented and is an ongoing, Army maintained program. The process of identifying wells eligible for alternate water supply and/or abandonment is accomplished by maintaining a "well inventory" (Appendix E). The well inventory is a database that was initially developed in 1992 and has been periodically updated since (now annually as part of the APR). For the purposes of the well inventory, a study area was established to encompass the groundwater plume (same area as the MDH SWCA). The well inventory is intended to include all wells within the study area, whereas areas of concern are defined by the edge of the groundwater plume, plus an additional ¼-mile buffer. The wells are grouped into categories based on factors such as location relative to the area of concern, type of use, active/non-active status, sealed, etc. Wells in categories with the potential to be impacted are periodically sampled to see if they qualify for alternate water supply and/or abandonment. Thus, maintenance of the well inventory consists of the following tasks:

- 1. Check if the area of concern needs to be adjusted based on the extent of contamination,
- 2. Check if there are any previously unknown wells to be added to the database (coordination with the MDH as described in Appendix E),
- 3. Sample wells on a prescribed schedule,
- 4. Take the appropriate course of action per results,

- 5. Update the well inventory database with any new information (e.g., water quality results, owner information, construction information, well re-categorizing),
- 6. Report findings in the APR.

The following questions and answers summarize developments since the last APR with respect to OU1.

Did the area of concern within OU1 change during FY 2018, as defined by the 5 µg/L contour line?

As shown on Figure 3-1, the area of concern did not change significantly during FY 2018. The well inventory study area encompasses the FY 2018 area of concern.

Were any additional water supply wells discovered within the area of concern for OU1 that are completed within an aquifer of concern?

No. See Appendix E for additional information.

Were any water supply wells within the area of concern for OU1 sampled during FY 2018 (outside of those included in the OU1 performance monitoring plan)? If yes, what were the findings?

No. The next comprehensive sampling event for water supply wells within the OU1 area of concern is scheduled for FY 2020.

Were any well owners offered an alternate water supply and/or well abandonment during FY 2018? No.

For OU1, are there any well owners that meet the criteria, but have not yet been provided an alternate water supply?

No.

For OU1, are there any wells that meet the criteria, but have not yet been abandoned?

No.

Is any sampling of water supply wells (excluding those included in the OU1 performance monitoring plan) proposed prior to the next report?

No. FY 2019 is not a scheduled sampling event for inventory wells, as shown in Appendix A.1. The next major sampling event is scheduled for FY 2020.

Are there any changes or additional actions required for this remedy component?

No.

3.2 Remedy Component #2: Drilling Advisories

Description: "Implementing drilling advisories that would regulate the installation of new private wells within the North Plume as a SWCA." (OU1 ROD, page 2)

Performance Standard (how do you know when you're done):

For initial implementation, when the MDH has issued a SWCA Advisory. Implementation will continue until such time that the groundwater concentrations are below the cleanup levels.

Has the MDH issued a SWCA Advisory?

Yes, in June 1996. In June 1999, the MPCA requested the MDH extend the SWCA boundary further southwest to the Mississippi River and Marshall Avenue ensuring the southern boundary fully encompassed the plume. The SWCA also covers OU3 and, as of April 2016, all of OU2. The current boundary of the SWCA is shown on Figure E-1 (Appendix E).

Are any changes or additional actions required for this remedy component?

No.

3.3 Remedy Component #3: Extract Groundwater

Description: Extracting groundwater from the North Plume using the NBCGRS, subject to the following:

- 1. The initial aggregate groundwater extraction rate shall be consistent with the long-term operating history of the NBCGRS;
- Future decreases in the aggregate extraction rate shall be determined by the Army, USEPA, and MPCA using a transparent public process and rational engineering, scientific, and economic analyses at least as rigorous as those employed in the FS that was the basis for the original remedy selection;
- Future changes to the aggregate or individual well extraction rates shall be made so as to assure that the rate of restoration of the aquifer will not be slowed or result in a duration of remedy longer than was contemplated by the original ROD;
- The facilities comprising the NBCGRS may be modified as necessary to assure the restoration of the full areal and vertical extent of the aquifer in a timeframe as contemplated in 3.c, above (2006 OU1 ROD Amendment, page 5-2 & 5-3).

Through January 2008, the remedy component consisted of recovering deep (Unit 4) groundwater using three primary City of New Brighton wells (NBM #4, #14, and #15) with three alternate wells (NBM #3, #5, and #6). NBM #3 and #4 were existing wells completed in both the Prairie du Chien and Jordan. NBM #5 and #6 were existing wells completed in the Jordan. NBM #14 and NBM #15 were constructed in the Prairie du Chien as part of the remedy and began pumping in December 1996 and March 1998, respectively. The locations of the recovery wells are shown on Figure 3-1.

The extracted groundwater is used as part of the New Brighton water supply system (except during the current remedy time-out), and as such, New Brighton took the lead on design and construction of the system and is responsible for system operation. New Brighton contracted Barr to provide design and construction oversight services. The federal government is paying for the OU1 remedy.

In 2006, New Brighton proposed to the Army modifying the agreement between the two parties to allow more flexibility in how they operate the NBCGRS, and to increase removal of contaminant mass from the aquifer. In November 2007, the USEPA and MPCA provided consistency approval of the revised pumping rates. Appendix A.5 (Table D-1 and Table D-2 from the settlement agreement between the Army and New Brighton) presents the new pumping rates in effect as of January 2008.

The revised pumping approach does not affect the approved statistical analysis used to evaluate the effectiveness of the remedy as set forth by the OU1 ROD Amendment. The Army has made it clear to

New Brighton that if the changes cause statistical evaluation results that are not in compliance with the OU1 ROD Amendment, the pumping allocations will revert to the previous scheme.

Performance Standard (how do you know when you're done):

When the NBCGRS is operating consistent with long-term NBCGRS operating rates.

During FY 2018, did the OU1 extraction system operate per the New Brighton operational plan and consistent with past operations?

No. As discussed above, 1,4-dioxane detections in the NBCGRS wells caused pumping cessation on April 15, 2015, including the Fridley Interconnection. Based on past operations, the target average daily pumping rate is 3.168 million gallons per day (Appendix A.5). In FY 2018, the NBCGRS was in a remedy time-out, but began operation again in November 2018. Hence, FY 2018 pumping did not meet targeted extraction.

Are any changes or additional actions required for this remedy component?

Yes. The City of New Brighton will continue the process of designing and installing Ultraviolet Reactors for Advanced Oxidation to treat 1,4-dioxane, enabling restart of the groundwater extraction remedy.

3.4 Remedy Component #4: Removal of VOCs by GAC

Description: "Pumping the extracted groundwater to the PGAC Water Treatment Facility in New Brighton for removal of VOCs by a pressurized GAC system." (OU1 ROD, page 2)

Treatment by the PGAC (along with iron and manganese removal and chlorination) makes the recovered groundwater suitable for municipal drinking water purposes, with respect to VOCs. The PGAC is located approximately one-third mile south of Interstate 694 near Silver Lake Road. The City of New Brighton is responsible for operation and maintenance of the PGAC, with cost reimbursement from the Army for the operations related to the remedy.

Performance Standard (how do you know when you're done):

When the treated water meets the MCL and non-zero Maximum Contaminant Level Goals (MCLGs) established by the Safe Drinking Water Act (SDWA) for the chemicals of concern, as identified on page 18 of the OU1 ROD.

Did the treated water meet the MCLs and non-zero MCLGs established by the SDWA for the OU1 chemicals of concern?

Not applicable. As the NBCGRS did not operate in FY 2018, treated water samples could not be collected and evaluated for compliance. Some very limited pumping occurred for non-supply plant operations (e.g., filter backwashing).

Is any sampling of the treated water proposed prior to the next report?

Sampling of the treated water will resume in FY 2019 because the NBCGRS began operation again in November 2018.

Are any changes or additional actions required for this remedy component?

Yes. The City of New Brighton will continue with its process of designing and installing Ultraviolet Reactors for Advanced Oxidation treatment so the water treatment remedy component can resume. Note that this remedy component will need to be modified in a pending ESD such that "removal of VOCs by GAC" will become "removal of VOCs and 1,4-dioxane by Advanced Oxidation."

3.5 Remedy Component #5: Discharge of Treated Water

Description: "Discharging all of the treated water to the New Brighton municipal distribution system" (OU1 ROD, page 2).

Performance Standard (how do you know when you're done):

When the connection to the New Brighton municipal supply system has been completed and water is being discharged.

Is the treated water being discharged to the New Brighton municipal distribution system?

No. As a remedy time-out is still in place, no water was treated or discharged in FY 2018.

Are any changes or additional actions required for this remedy component?

Yes. The City of New Brighton will continue with its process of designing and installing Ultraviolet Reactors for Advanced Oxidation treatment at the NBCGRS to treat 1,4-dioxane so the groundwater discharge remedy component can resume.

3.6 Remedy Component #6: Groundwater Monitoring with Verification of Continuing Aquifer Restoration

Description: "Monitoring the groundwater to verify the effectiveness of the remedy through measurement of overall plume shrinkage (geographically) and decreasing contaminant concentrations" (2006 OU1 ROD Amendment, page 5-3).

Performance Standard (how do you know when you're done):

When performance groundwater monitoring verifies aquifer restoration.

Is this remedy component being implemented?

Yes. Performance monitoring programs have been established to collect the data required to verify the effectiveness of remedy components #1 through #6. Table 3-1 summarizes the performance monitoring requirements, implementing parties, and the specific documents that contain the monitoring plans.

Were the groundwater monitoring requirements for this remedy met?

Yes. FY 2018 was a "major" sampling year. Also, with the detection of 1,4-dioxane in the NBCGRS wells, the USEPA and MPCA requested that the Army analyze groundwater samples for 1,4-dioxane at all scheduled OU1 sampling locations during the summer FY 2018 sampling event. All the required and requested sampling was completed.

Is any groundwater monitoring proposed prior to the next report?

Yes. When operating, monthly monitoring of the extraction wells and treatment system effluent is performed by the City of New Brighton in accordance with the "New Brighton Water System Sampling and Analysis Plan," June 1997. However, the OU1 extraction system was not restarted until November 2018 and therefore no such monitoring occurred.

Other groundwater monitoring will be in accordance with the Groundwater Monitoring Plan included as Appendix A.1. A "major" event was conducted for FY 2018. The next "minor" performance monitoring event will be in FY 2019. The next "major" well inventory sampling event is scheduled for FY 2020.

Does groundwater monitoring show aquifer restoration is occurring?

Historic groundwater data trends and quality (Appendix D) indicate there has been significant improvement in groundwater conditions as a result of both TGRS and NBCGRS operation. Based on data leading up to the April 2015 remedy time-out, TCE trends in the NBCGRS wells appeared to be stable for NBM #3, #4, #14, and #15 and decreasing for NBM #5 and #6, as shown in Figure 3-2. Aquifer restoration based on TCE trends in the NBCGRS wells will be further examined when monitoring resumes upon restarting the NBCGRS remedy.

Figure 3-3, Figure 3-4, and Figure 3-5 show both the TCE and 1,4-dioxane plumes depicted by depth and geology (5 µg/L for TCE; 1 µg/L for 1,4-dioxane) in the Upper and Lower Unit 3 Combined, Upper Unit 4, and Lower Unit 4 portions of the aquifer for FY 2018, along with cross-section lines, based on the summer 2018 sampling event. Figure 3-3 presents the combined Upper and Lower Unit 3 TCE plume with the highest concentrations residing near the OU2 source areas. Concentrations decline as the plume moves toward the southwest due to mass removal by the TGRS and as concentrations migrate into bedrock via deeply eroded bedrock valleys as mapped by the Minnesota Geologic Survey (Mossler 2013). The regional presence of these valleys within and beyond TCAAP affects groundwater movement. TCAAP is divided roughly in half by a southeast-to-northwest trending bedrock valley, which is joined from the east by a branching valley containing south trending dead-end tributary valleys crossing portions of OU1.

The buried valleys may act as hydraulic short-cuts, allowing groundwater to move directly from Unit 3 into bedrock. Moreover, buried valleys create isolated points and bedrock knobs, cut off from adjacent bedrock by valley-fill sediments. In a bedrock aquifer system as complex as this, groundwater does not flow uniformly from up-to-down-gradient, distributed evenly along parallel paths, but is concentrated in the highest permeability, most-interconnected beds, within conduits (Prairie du Chien) and bedding-plane fractures (Jordan). Figures 3-4 and 3-5 present both TCE and 1,4-dioxane in the Upper and Lower Unit 4 bedrock plumes, respectively. Additionally, unlike historical plume maps, these figures show a conceptual representation of bedrock geology. As presented in both figures, eroded bedrock valleys are filled with overburden where concentration isocontours follow the bedrock topography. Further discussion on buried bedrock valleys and the effect on local hydrogeology is discussed in the remedy review report, which received approval by regulatory agencies in June 2018.

Figure 3-1 shows the 1 μ g/L TCE contour for Upper Unit 4 in 1990, 1999, 2009, and 2018. Figures 3-6, 3-7, and 3-8 depict cross-sections showing both the OU1 and OU3 plumes. Figures 3-6 and 3-7 overlap to some extent and should be viewed together. Figure 3-9 depicts the 100 μ g/L TCE contour for Upper Unit 4 for certain years between 1990 and 2018, similar to Figure 3-1 which shows the 1 μ g/L TCE contour over that same period. In general, the plumes show "no trend" or stable concentrations (see statistical

analysis below); as Figure 3-1 and Figure 3-9 show, the plume footprint remains similar to 2009. A slight northward shift of the 1 µg/L and 100 µg/L TCE contours north of the NBCGRS can be seen on the northwest edge of the plume, likely a result of the NBCGRS remedy time- out since April 2015. This shift was first observed following the FY 2015 sampling event and was observed slightly farther north again in FY 2016. Additional sampling will be needed to see if the trend continues, and to see if the west edge of the plume in areas south of the NBCGRS also begin to show a similar trend. Other differences between 2009 and 2018 plumes are due to plume reinterpretation by JV as part of the OU Remedy Review. The water level data from summer 2018 for Upper Unit 4 are presented as a potentiometric map on Figure 3-10.

The OU1 Technical Group Technical Memorandum Statistical Evaluation Method for Water Quality Data, Operable Unit 1 (Army 2004) was prepared to develop statistical methods specifically selected to evaluate the long-term progress of remediation, plume evolution, and aquifer restoration in OU1. The OU1 Technical Group (OU1TG) states the objective of the statistical evaluation as follows:

"Verify progress in cleanup of the plume through measurement of overall geographic plume shrinkage and decreasing contaminant concentrations."

The OU1TG identified five issues that need to be statistically evaluated with respect to the above objective:

- 1. Measure changing concentrations immediately downgradient of the TGRS, as this area is the first to be affected by any potential contaminant migration via TCAAP.
- 2. Measure changes in the geographical size of the plume over time.
- 3. Measure changes in concentrations immediately downgradient of the NBCGRS, as this is the first area to be affected by any potential contaminant migration outside of NBCGRS capture.
- 4. Measure any unforeseen changes in plume configuration. This addresses the possibility that changing flow patterns may cause a shift in the plume but not necessarily any change in size. A plume shift may require a redistribution of pumping.
- 5. Measure the long-term trends in overall VOC concentrations (as an indicator of contaminant mass). This provides an overall picture of remedial progress.

The OU1TG developed a series of five well groups designed to address each of the issues listed above. For each group, appropriate statistical tools were specified, and a threshold identified that would trigger closer scrutiny by the Army and regulators (USEPA and MPCA). Appendix D.2.1.5 shows the factors to consider and potential additional actions that may be implemented if the statistical threshold is triggered. As Appendix D.2.1.5 shows, a threshold trigger initiates a closer look at the data and the context of the data in terms of remedy performance or potential risk. A threshold trigger does not automatically require any specific action. The five groups, corresponding to the five issues discussed above, are:

Group 1: Downgradient of the TGRS capture zone. This zone should show reductions over time in response to TGRS mass removal and containment. However, it is also theorized as the TGRS stagnation zone where groundwater velocities are reduced, and response may be slow. Furthermore, individual wells near the stagnation zone may show increases in contaminant concentrations during some points in time, as the plume shifts in response to changes in pumping.

Group 2: Plume Edge Wells. This zone includes wells that define the edges of the plume downgradient of the TGRS. These are wells with low concentrations of VOCs (<100 μ g/L) that will indicate a reduction in overall plume size if VOC concentrations continue to decline.

Group 3: Downgradient Sentinel Wells. This is a zone downgradient of the NBCGRS stagnation zone. This group includes three wells but more accurately is defined as a geographic area immediately downgradient of the NBCGRS. This group should help demonstrate improvement due to the VOC mass removal by the NBCGRS over time, analogous to Group 1 and the TGRS.

Group 4: Lateral Sentinel Wells. These are "clean" wells downgradient of the TGRS that are beyond the current plume boundaries. These wells should help identify large, unexpected, lateral changes in plume configuration, such as a shifting or expansion of the plume boundary.

Group 5: Global Plume Mass Wells. This group includes all the monitoring wells necessary to construct a contour map of the VOC plume. Production wells are not used in Group 5 since the data may not be comparable to monitoring well data. Some wells located within OU2 are included in Group 5 to support the contouring near the OU2 boundary. This group reflects the overall VOC mass in the aquifer and should show an overall reduction in VOC mass over time.

In October 2005, the Army received a consistency determination on Modification #1 to: *OU1 Technical Group Technical Memorandum Statistical Evaluation Method for Water Quality Data, Operable Unit 1,* prepared by the Army, dated December 2004. This modification created well Group 6 to address the Jordan portion of the Unit 4 aquifer.

Group 6: Jordan Wells. The group includes all Jordan monitoring wells, the Prairie du Chien wells nested with them, and NBM Wells #3, #4, #5, and #6. The inclusion of the Prairie du Chien wells is to facilitate comparing the trends between it and the Jordan at these locations. This group will help identify any changes in the plume occurring in the Jordan portion of the aquifer. Additional detail on the well groups and analysis is presented in the OU1 Technical Memorandum, Modification #1 and Appendix D.2.

Table 3-2 presents the FY 2018 groundwater quality data for OU1 collected to support the statistical analysis developed by the OU1TG. Historical TCE concentrations at any well can be viewed in the Appendix D Groundwater Quality: Organic Data spreadsheet included on the FY 2018 APR CD-ROM. The statistical analysis in Appendix D.2 follows the format described in the OU1 Technical Memorandum and Modification #1.

Table 3-3 summarizes the statistical results for all groups, from Appendix D.2, reflecting the data collected through FY 2018. Table 3-3 includes an assessment of the statistical thresholds that were triggered in the analysis and brief comments addressing these threshold triggers. Only wells that were sampled in 2018 and have "increasing" or "no significant trend" trends are discussed below. For discussion of other wells or well groups, refer to the FY 2016 APR.

<u>Group 2 (Plume Edge Wells)</u>:03U805 (Increasing): Concentrations of TCE at this well have been increasing since FY 2013 and was 49 μ g/L in both FY 2016 and FY 2018 (was 1.5 μ g/L in FY 2005). The trend indicates an increasing trend and most likely reflects plume shifts. This well is located on the southern edge of the OU1 plume immediately downgradient from the TGRS.

04U832 (No Significant Trend): TCE concentrations at this well have been generally stable, fluctuating between 41 μ g/L and 59 μ g/L since FY 2005. This well is located on the southern edge of the OU3 plume.

04U843 (Increasing): TCE concentrations at this well have been erratic, but generally increasing since its installation in 1987. The overall trend appears to be stabilizing. This well is in the central part of the north plume not far downgradient of the TGRS and just downgradient of 04U847, which has the highest concentration of TCE in OU1. As this area is outside of the TGRS capture zone, this well can be expected to increase as migration of TCE from 04U847 continues downgradient.

04U846 (Increasing): The TCE concentration has increased from 4.2 μ g/L in FY 2005 to 17 μ g/L in FY 2018. Concentrations at this well have historically been erratic, with a maximum concentration of 120 μ g/L in 1988 and dipping down below 1 μ g/L from 1998 through 2001. It is located towards the south side of the OU1 plume. The historically erratic trend is likely due to varying flow patterns created by the NBCGRS.

04U877 (No Significant Trend): The trend at this well has previously been identified as stable. While results have varied less than 1.0 μ g/L (between 0.34 μ g/L and 1.3 μ g/L) since 2005, the erratic increases and decreases in TCE concentrations over the years has resulted in a high "p-value" and thus a no significant trend outcome for this well.

409549 (Probably Increasing): TCE concentrations at this well have fluctuated between 4.4 μ g/L and 220 μ g/L since it was installed in 1985. The concentration has been steadily increasing over the last 10 years but decreased to 28 μ g/L in FY 2018, which is well within the historical trend at the well.

409557 (Probably Increasing): TCE concentrations at this well have fluctuated between non-detect and 79 μ g/L since it was installed in 1987. The concentration has been steadily increasing the last 15 years but decreased to 17 μ g/L in FY 2018, which is well within the historical trend at the well.

Group 5 Unit 3 Wells:

03L809 (No Significant Trend): TCE concentrations show a generally decreasing trend. Concentrations have been between 90 μ g/L and 150 μ g/L since FY 2011 and appear to have stabilized around 120 μ g/L. This well is in the OU1 plume just down gradient from the TGRS.

03U822 (No Significant Trend): TCE concentrations have been between 42 μ g/L and 160 μ g/L since FY 2005. The raw trend for this well is slightly increasing; however, the well is in the center of the north plume and therefore the increasing raw trend most likely represents slight shifts in the core of the plume.

Group 6 (Jordon Wells):

<u>04J708 (Increasing): TCE concentrations at this well have increased steadily since FY 2009. The</u> <u>concentration in FY 2018 was 9.7 μ g/L. This well is located on the southern edge of the OU1 plume and</u> may indicate a slight shift or expansion of the plume.

04J836 (Increasing): This well is directly downgradient from the NBCGRS and has previously shown "No Significant Trend". TCE concentrations have increased slightly from 10 μ g/L in FY 2013 to 40 μ g/L in FY 2016 and then decreased to 26 μ g/L in FY 2018. This general increase may have been influenced by the NBCGRS shut down in 2015.

04J838 (No Significant Trend): TCE concentrations at this well have historically been stable around 30 μ g/L; however, in FY 2018 the concentration decreased to 0.91 μ g/L. This well is downgradient from the NBCGRS and the change may have been influenced by the system shut down in 2015.

04J839 (No Significant Trend): TCE concentrations at this well have historically been below 5 μ g/L; however, in FY 2018 the concentration increased to 6.1 μ g/L. This well is downgradient from the NBCGRS and this slight increase may have been influenced by the system shut down in 2015.

04J847 (No Significant Trend): This well is located just downgradient of the TGRS. TCE concentration increased from 790 μ g/L in FY 2014 to 910 μ g/L in FY 2016 and decreased to 640 μ g/L in FY 2018. The overall trend is still increasing and continued annual monitoring is appropriate given its central plume location.

04J849 (Increasing): This well had historically been a non-detect well. TCE was 0.7 μ g/L in FY 2016 and jumped to 59 μ g/L in FY 2017. The concentration decreased again in FY 2018 to 1.3 μ g/L. Continued annual monitoring is appropriate to further evaluate how the OU1 plume is shifting.

Group 6 (Nested Wells):

04U702 (No Significant Trend): Concentrations of TCE at this well have consistently been below 3 µg/L; therefore, a "No Significant Trend" result is not of concern.

04U836 (No Significant Trend): This well is near the NBCGRS; therefore, greater variability is expected. TCE concentrations at this well have historically varied between 23 μ g/L and 79 μ g/L. The TCE concentration decreased in FY 2018 to 18 μ g/L, likely due to plume shifts as a result of the NBCGRS shut down.

04U837 (No Significant Trend): This well is near the NBCGRS; therefore, greater variability is expected. TCE concentrations at this well have historically remained below 5 μ g/L; therefore, a "No Significant Trend" result is not of concern.

04U838 (No Significant Trend): TCE concentrations have been below 3 μ g/L since FY 2009 but increased to 47 μ g/L in FY 2018. A similar increase occurred in FY 2007 when the TCE concentration spiked to 48 μ g/L. Additional monitoring will be conducted to assess the overall trend.

04U839 (Increasing): This well is near the NBCGRS so greater variability is expected. The well is located on the west/northwest edge of the plume and has historically had concentrations below 3 μ g/L; however, the concentration increased to 15 μ g/L in FY 2015 and has had concentrations between 40 μ g/L and 50 μ g/L during the three most recent sampling events. This increase may be influenced by the NBCGRS shut down.

04U849 (No Significant Trend): Concentrations of TCE at this well have been erratic, but generally increasing. This well is located near the center of the OU1 plume downgradient from well 04U847, which is the well with the highest concentration of TCE in the OU1 plume. TCE concentrations have generally stabilized within the last few years but appear to have a downward trend within the last few sampling events.

Overall Statistical Assessment:

Two additional threshold triggers were identified in FY 2018 at wells 409549 and 409557. Discussion of established threshold triggers can be found in the FY 2016 APR. These triggers highlight specific areas of the plume that are changing over time. This type of behavior is expected in a large complex flow system such as OU1. The thresholds triggered do not suggest any problems with the remedial systems but suggest movement within the established plumes. Overall, the data meet the statistical criteria developed

in this document for assessing the remedial progress in the OU1 aquifers. The data show continuing improvement in the OU1 plume through FY 2018. The statistical behavior of the OU3 plume is addressed in Section 13.

How much VOC mass has been removed (at each well and total)?

The NBCGRS did not operate in FY 2018; therefore, no VOCs were removed by the NBCGRS in FY 2018. The total cumulative VOCs removed by the NBCGRS through April 2015 is 23,644 pounds.

Figure 3-11 shows the annual VOC mass removed (graph top), annual pumping volumes, and annual mass removal per unit volume pumped since FY 1997 (when NBM #14 was brought online). As stated above, the mass removal in FY 2018 was null, due to the remedy time-out. Generally, mass removal has been decreasing since FY 1998, when the last extraction well was activated (NBM #15). This overall decline in mass removal is consistent with observed decreasing trends for TCE in OU1 deep groundwater, suggesting that aquifer restoration is progressing.

Are any changes or additional actions required for this remedy component?

Yes. The City of New Brighton completed an Advanced Oxidation treatment system in November 2018 so aquifer restoration can resume with better protection for the consumer.

4 OPERABLE UNIT 2: SHALLOW SOIL AND DUMP SITES

The 1997 OU2 ROD and subsequent Amendments and ESDs are discussed in Sections 4 through 12 of this APR. This section specifically addresses the shallow soil and dump sites. Relevant modifications to the OU2 ROD include Amendments #1, #3, #4, #5, and ESD #2.

Through the OU2 Remedial Investigation/Feasibility Study process, Sites A, C, E, H, 129-3, and 129-5 were found to have inorganic and/or organic contaminants above the cleanup goals specified in Table 1 of the OU2 ROD. Unpermitted landfills, or dumps, were identified within Sites A, B, E, H, and 129-15. The OU2 ROD (page 2) describes nine remedy components to address the shallow soil and dump sites.

OU2 ROD Amendment #1 modified the requirements for Site C-2 soil and sediment (note that Site C groundwater and surface water is addressed separately in Section 7). Because the depth to groundwater is shallow at Site C-2, it was not feasible to remove all contaminated soil and sediment. The Amendment modified remedy component #2 related to excavation of soil, to allow the placement of a 4- foot thick soil cover over areas where contamination remains in-place above the cleanup levels. ROD Amendment #1 also specified land used controls (LUCs) as an additional remedy component for Site C-2.

OU2 ROD Amendment #2 addressed shallow groundwater at Site I, which is discussed in Section 8.

OU2 ROD Amendment #3 affected the shallow soil and dump sites in four principal ways:

- The Amendment documented, as final remedies, the additional actions performed for shallow soil at Site D and the dump at Site G, after completion of the deep soil requirements set forth for both in the OU2 ROD (see Section 5 of this report for discussion of the deep soil).
- 2. The Amendment documented the use of soil covers as part of the final remedy at Sites E, G, H, and 129-15.
- 3. The Amendment documented final remedies for five sites with soil contamination that were not originally included in the OU2 ROD: Grenade Range, Outdoor Firing Range, 135 PTA Stormwater Ditch, Trap Range, and Water Tower Area. At these sites, either previous removal actions had been completed that reduced soil contamination to below cleanup levels, or investigations had determined that no action or no further action was needed. The Amendment incorporated the remedies for these sites into the overall remedy for OU2.
- 4. The Amendment specified LUCs as an additional remedy component for shallow soil and dump Sites D, E, G, H, 129-15, Grenade Range, and Outdoor Firing Range. LUCs are not needed for the 135 PTA Stormwater Ditch or Trap Range because contamination levels are suitable for unlimited use/ unrestricted exposure. The water tower area is also suitable for unlimited use/ unrestricted exposure; however, it is located within the area having blanket land use restrictions as specified in the Land Use Control Remedial Design (LUCRD).

ESD #1 is discussed in Section 6 (Site A shallow groundwater), Section 9 (Site K shallow groundwater), and Section 12 (OU2 deep groundwater).

ESD #2 specified LUCs as an additional remedy component for Sites A, C-1, 129-3, and 129-5. ESD #2 also documented that no further action is required at Site B. Site B is located within the area having blanket land use restrictions.

ROD Amendment #4 was signed in January 2012 and documents previously-completed soil removal actions conducted at two sites: the 535 PTA and Site K. No further action is required for the soils located near the excavation areas at these two sites; though the excavation area for the 535 PTA is located within the area of the Arden Hills Army Training Site that has restricted commercial use. The ROD amendment also addressed Building 102 shallow groundwater, discussed in Section 10, and OU2 aquatic sites, discussed in Section 11.

ROD Amendment #5 was signed in March 2014 and documents previously-completed soil removal actions conducted at soil areas of concern at three sites: Site A, the eastern portion of the 135 PTA, and the MNARNG EBS Areas. It also documents that LUCs are required at these sites.

4.1 Remedy Components #1 through #9: Soil Remediation

The nine remedy components specified in the OU2 ROD (page 2) have been completed for the shallow soils and dumps at Sites A, C, D, E, G, H, K, 129-3, 129-5, 129-15, Grenade Range, Outdoor Firing Range, 135 PTA Stormwater Ditch, the eastern portion of the 135 PTA, 535 PTA, MNARNG EBS Areas, and Water Tower Area. Remedy Components #1 through #8 addressed the characterization, excavation, sorting, treatment, disposal, site restoration, site access restrictions (during remedial actions), and limited period of post-remediation groundwater monitoring. Remedy Component #9 addressed the characterization of dumps at Sites B and 129-15. The characterization work at both sites led to a determination that no further action was required at Site B and construction of a cover at Site 129-15, which were documented through ESD #2 and OU2 ROD Amendment #3, respectively.

4.2 Remedy Component #10: Land Use Controls

Description: "OU2 ROD Amendments and ESDs made LUCs a part of the remedy for shallow soil and dump sites where contamination remains in-place above levels that allow for unlimited use and unrestricted exposure. LUCs are also necessary to protect the integrity of the soil covers constructed at various sites."

Performance Standard (how do you know when you're done):

Initial implementation was done when the USEPA and MPCA provided consistency approval for an OU2 LUCRD document. Implementation will continue indefinitely unless further action is taken that would allow for unlimited use and unrestricted exposure.

Has a LUCRD document been approved to address LUC issues for OU2, and is it being implemented?

Yes. The USEPA and MPCA provided consistency approval for the OU2 LUCRD in September 2010 and it has been implemented by the Army. Revision 4 of the OU2 LUCRD was approved by the USEPA and MPCA in August 2016. This revision eliminated soil LUCs from the "California-Shaped Area" (which is 380 acres of the 427 acres transferred/leased to Ramsey County in 2013), following soil cleanup to levels consistent with unlimited use / unrestricted exposure. LUCs for other shallow soil sites were not affected by this revision. Revision 5 of the OU2 LUCRD was approved by the USEPA and MPCA in March 2018. Revision 5 changed the land use controls for approximately 108 acres in the western portion of OU2 to allow for recreational use, on land to be transferred to Ramsey County.

Was an annual site inspection for LUCs conducted in FY 2018?

Yes. On July 30, 2018, the Army, National Guard, and JV conducted the annual inspection of OU2 sites. The checklist that was completed during the inspection is included as Appendix F.

Did the inspection identify any follow-up actions needed to maintain the protectiveness of the LUCs?

No.

5 OPERABLE UNIT 2: DEEP SOIL SITES

For purposes of the OU2 ROD, Sites D and G were considered deep soil sites because VOC contamination extended to depths between 50 and 170 feet. Some additional shallow soil contaminants were also present at Site D, and Site G also contains a dump. The OU2 ROD (pages 2-3) describes seven remedy components to be implemented for these two sites:

Remedy Component #1: Groundwater Monitoring,

Remedy Component #2: Restrict Site Access (During Remedial Actions),

Remedy Component #3: Soil Vapor Extraction (SVE) Systems,

Remedy Component #4: Enhancements to the SVE Systems,

Remedy Component #5: Maintain Existing Site Caps,

Remedy Component #6: Maintain Surface Drainage Controls, and

Remedy Component #7: Characterize Shallow Soils and Dump.

For Remedy Component #1, ongoing groundwater monitoring near these two sites is completed as part of OU2 deep groundwater monitoring (Section 12) and is not discussed separately in this section. Remedy Components #2 to #6 were related to continued operation of the SVE systems that had been installed in 1986, shut down in 1998 and subsequently removed completing Remedy Components #2 to #6.

Regarding Remedy Component #7, additional shallow soil investigation work (for non-VOC contaminants) was completed at Site D, and characterization work of the dump was completed at Site G, which completed this remedy component. The investigation/characterization work led to removal of shallow soils at Site D and construction of a cover at Site G, which were documented through OU2 ROD Amendment

#3.

In summary, the deep soil requirements of the OU2 ROD have been completed. There are ongoing LUC requirements for the shallow soil at Site D and the dump at Site G, as discussed in Section 4.

6 OPERABLE UNIT 2: SITE A SHALLOW GROUNDWATER

Shallow groundwater at Site A has been impacted by VOCs and antimony. The selected remedy in the OU2 ROD incorporates the use of a groundwater extraction system, which began operation May 31, 1994. When operating, the system conveyed extracted groundwater to the sanitary sewer for treatment at a Publicly-Owned Treatment Works (POTW). However, as further discussed below, the groundwater system ceased operation (with regulatory approval) on September 24, 2008, while implementation of monitored natural attenuation (MNA) was being evaluated. The ROD prescribes five major components of the remedy, and until a ROD amendment can be approved, the original components will be retained in this section (with discussion that is appropriate to the MNA remedy).

The original 8-well groundwater extraction system that was selected in the OU2 ROD began operation May 31, 1994. On July 11, 2000, with regulatory approval, EW-5 through 8 (the "second line" of extraction wells) were shut down due to VOC concentrations in these wells having declined below cleanup levels. In July 2008, the USEPA and MPCA approved the Site A Shallow Groundwater: 10-Year Evaluation Report (Wenck 2008a). The 10-Year Report was prepared to fulfill a requirement of the ROD, which states that for shallow groundwater contamination at Site A, "should aquifer restoration not be attained within the ten-year lifespan of the remedy, additional remedial measures will be addressed". Because the 10-year mark had been reached and contamination was still present above the cleanup levels, the 10-Year Report was prepared to discuss the status of the site and to evaluate any potential changes to the remedy that would be beneficial. MNA (through abiotic degradation) was the recommended alternative for Site A that was approved by the USEPA and MPCA.

In September 2008, the USEPA and MPCA approved the Site A Shallow Groundwater: Monitoring and Contingency Plan (Wenck 2008b), and EW-1 through 4 (the "first line" of extraction wells) were then shut off on September 24, 2008. The Monitoring and Contingency Plan presented the monitoring plan to be implemented when the extraction wells were shut off, and presented the contingency actions that will be taken by the Army if groundwater monitoring indicates that any of the identified trigger points are exceeded. These monitoring and contingency actions were incorporated into the APR, and thus any changes to monitoring and contingency actions must be approved by the USEPA and MPCA through revisions to the APR.

The decision to proceed with MNA was based in part on the MPCA and USEPA natural attenuation study at the site (2000) and follow-up MPCA/USEPA microcosm studies that have verified that abiotic degradation of VOCs in Site A groundwater is occurring at substantial rates. Such degradation acts to reduce contaminant mass and mobility by breaking down the contaminants as they move downgradient. The decision to proceed with MNA was also based on the absence of any likely receptors. The closest potential groundwater receptor is located approximately 1,000 feet downgradient from 01U352 (EW-2) and 01U353 (EW-3). This domestic well has not been operable for many years (and even when it was, the water was only used for irrigation purposes). Beyond this unlikely receptor, there are no other existing downgradient receptors between the plume and Rice Creek, which is approximately 1,800 feet away.

Based on a November 11, 2015 Technical Memorandum submitted by the Army that documented the FY 2015 monitoring results and recommended changing the remedy to MNA, the USEPA and MPCA approved changing the remedy to MNA in lieu of groundwater extraction and discharge. This change was

approved in ROD Amendment #6 in early FY 2018. Since the extraction wells are still included in the monitoring plan for Site A, they will not be sealed.

6.1 Remedy Component #1: Groundwater Monitoring

Description: "Groundwater monitoring to track plume migration and remedy performance." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When a performance groundwater monitoring program has been established and ongoing monitoring is compliant with the program.

Is this remedy component being implemented?

Yes. Table 6-1 summarizes performance monitoring requirements, implementing parties, and monitoring plan documents. The FY 2018 Monitoring Plan is included in Appendix A, and the FY 2018 water quality monitoring locations and frequencies are also summarized on Figure 6-1. Any deviations are explained in Appendix C.2. Figure 6-2 presents summer 2018 measured groundwater elevation contours.

Were the groundwater monitoring requirements for this remedy met? Yes.

Is any groundwater sampling proposed prior to the next report?

Yes, sampling of Site A groundwater monitoring wells will be according to the monitoring plan in Appendix A.1.

Groundwater sampling of water supply wells related to alternate water supply and well abandonment will be in accordance with recommendations in Appendix E. The next "major" event was previously scheduled for FY 2019; however, due to the discovery of 1,4-dioxane in deep groundwater, an unscheduled "major" event was conducted in FY 2015 and repeated by the Army in FY 2016. The next "major" event is now scheduled for FY 2020 to maintain the normal frequency of once every four years.

Are any changes or additional actions required for this remedy component?

Yes. As first proposed in the FY 2015 APR, monitoring of wells 01U350, 01U351 (EW-1), and 01U354 (EW-4) ceased in FY 2017. These wells are essentially redundant monitoring points to nearby wells 01U108, 01U116, and 01U138, respectively. However, 01U350 will be used as a temporary monitoring point in place of 01U108 until the obstruction that prevented monitoring in FY 2017 can be removed. As of the end of the FY 2018, the obstruction has not been removed from 01U108.

6.2 Remedy Component #3A: Land Use Controls

Description: The OU2 ROD (page 3) stated: "Institutional controls to restrict new well installations and provide alternate water supplies and well abandonment as necessary." For ease of discussion, the requirement has been broken into two pieces, with this section focusing on the LUCs. OU2 ESD #1 clarified the LUC component to include protection of the groundwater monitoring and extraction system infrastructure.

Performance Standard (how do you know when you're done):

For initial implementation, when the MDH has issued a SWCA Advisory, and when the USEPA and MPCA have provided consistency approval for an OU2 LUCRD document. Implementation will continue until such time that the groundwater concentrations are below the cleanup levels.

Has the MDH issued a SWCA Advisory for the area impacted by Site A?

Yes, issued June 1996, revised in December 1999 and April 2016; however, these revisions did not affect the boundary for the Site A vicinity.

Has a LUCRD document been approved to address LUC issues for OU2, including Site A groundwater, and is it being implemented?

Yes. The USEPA and MPCA provided consistency approval for the OU2 LUCRD in September 2010, which is being implemented by the Army. Subsequent revisions to the OU2 LUCRD have not changed the LUCs for Site A.

Was an annual site inspection for LUCs conducted in FY 2018?

Yes. On July 30, 2018, the Army, National Guard, and JV conducted OU2 site annual inspection, with a completed checklist included as Appendix F.

Did the inspection identify any follow-up actions needed to maintain the protectiveness of the LUCs?

No.

6.3 Remedy Component #3B: Alternate Water Supply/Well Abandonment

Description: The OU2 ROD (page 3) states: "Institutional controls to restrict new well installations and provide alternate water supplies and well abandonment as necessary." For ease of discussion, the requirement has been broken into two pieces, with this section focusing on the alternate water supplies and well abandonment.

Performance Standard (how do you know when you're done):

When well owners who qualify have been offered and provided with alternate water supply and/or have had their wells abandoned (or the offers have been rejected).

Is the remedy component being implemented?

Yes. The OU1 Alternate Water Supply and Well Abandonment Program is underway and was expanded to cover the area affected by the OU2 Site A shallow groundwater plume. See Section 3.1 for further information.

Did the boundary of the Site A plume get any bigger during FY 2018, as defined by the 1 μ g/L contour?

No. Table 6-2 presents the FY 2018 groundwater quality data for Site A. Using these data, Figure 6-3 shows the tetrachloroethene (PCE) concentrations and Figure 6-4 shows the cis-1,2-dichloroethene (cis-

1,2-DCE) concentrations. The latter is a degradation product of the former and represents the larger areal footprint. The plume decreased in size and the axis of the plume appears to have shifted slightly from the previous year, as shown on Figure 6-5.

Were any additional water supply wells discovered within the area of concern for the Site A plume that are completed within the aquifer of concern?

No.

Were any water supply wells within the Site A plume sampled during FY 2018? If yes, what were the findings?

No wells were sampled.

Were any well owners offered an alternate supply and/or well abandonment in FY 2018?

No.

Within the Site A plume, are there any well owners that meet the criteria, but have not yet been provided an alternate water supply?

No.

Within the Site A plume, are there any wells that meet the criteria, but have not yet been abandoned?

No.

Is any sampling of water supply wells proposed prior to the next report?

No. There are no water supply wells in the vicinity of Site A vicinity that require sampling.

Are any changes or additional actions required for this remedy component?

No.

6.4 Remedy Component #5: Source Characterization/ Remediation

Description: "Source characterization/remediation" (OU2 ROD, page 3).

Performance Standard (how do you know when you're done):

For characterization, when the investigation answered needed questions to prepare remedial design documents. For remediation, when soil contaminant concentrations are below cleanup levels specified in Table 1 of the OU2 ROD.

Is this remedy component being implemented?

Yes. Characterization work has been completed. Stone & Webster performed investigation work in 1997 and the Final Site A Investigation Report (Stone & Webster Environmental Technology & Services 1997) was issued December 12, 1997. The report delineated the extent of both VOC-contaminated and metalcontaminated soils requiring remediation. The source of VOC-contaminated soils was found to be the "1945 Trench". Remediation has been completed. Shaw Environmental and Infrastructure, Inc. (Shaw, formerly Stone & Webster) completed removal of metal-contaminated soils in FY 1999. Construction of an air sparging/soil vapor extraction (AS/SVE) system to remediate VOC-contaminated soils was completed by Stone & Webster in FY 2000, which began operation in early FY 2001. The AS system was shut off permanently in June 2001 due to a lack of increase in SVE VOC levels and due to concern regarding potential plume spreading. The AS system was being implemented voluntarily by the Army and was not a OU2 ROD requirement. Soil samples were collected within the source area in July 2002 (and previously in August 2001). In both events, the results showed minimal reduction in soil VOC concentrations. Since it appeared that many years of SVE system operation would be required before soil cleanup levels would be reached (if ever), the Army ceased SVE system operation on August 21, 2002, and submitted a work plan clarification to the USEPA and MPCA for excavation of source area VOC-contaminated soils, which received regulatory approval in early FY 2003. Post approval, 688 cubic yards of contaminated soil were excavated by Shaw and transported off-site to a permitted disposal facility (see Figures 6-3 and 6-4 for the location of the soil excavation area at the former 1945 Trench). The Site A Former 1945 Trench Closeout Report (prepared by Shaw) received regulatory consistency in FY 2004.

Are any changes or additional actions required for this remedy component?

No.

6.5 Overall Remedy for Site A Shallow Groundwater

Performance Standard (how do you know when you're done):

When the cleanup levels in Table 1 of the OU2 ROD have been attained throughout the areal and vertical extent of the Site A plume (OU2 ROD, page 54).

Has the Site A shallow groundwater remedy been completed (i.e., have the cleanup levels in Table 1 of the OU2 ROD been attained throughout the areal and vertical extent of the Site A plume)?

No. Table 6-2 presents the FY 2018 groundwater quality data and highlights the values that exceed a cleanup level. The respective cleanup levels were exceeded by concentrations of cis-1,2-DCE at 01U139 (710 μ g/L), 01U355/EW-5 (300 μ g/L), and 01U902 (92 μ g/L)and of antimony at 01U103 (6.7 μ g/L). None of the other COCs exceeded their respective cleanup levels in FY 2018.

What impact is MNA having on contaminant concentrations?

As evident in Table 6-2, and on Figures 6-3 and 6-4, PCE and TCE continue to be degraded to cis-1,2-DCE via natural attenuation. This degradation generally occurs within the distance between the source area and the first line of extraction wells (EW-1 through EW-4), with primarily only cis-1,2-DCE being detected downgradient of the first line of extraction wells. Figure 6-6 shows the cis-1,2-DCE concentrations plotted on geologic cross sections to illustrate the vertical extent of contamination (the cross-section locations are illustrated on Figure 6-4). Cis-1,2-DCE continues to be degraded via an abiotic process as the plume migrates. The MPCA and USEPA initially evaluated attenuation at the site using computer modeling of contaminant degradation, as documented in Evaluation of Natural Attenuation of Chlorinated Solvents in Ground Water at the Twin Cities Army Ammunition Plant (MPCA and USEPA 2000). The MPCA conducted a follow-up microcosm study (unpublished), the results of which were presented to the Army and USEPA on April 10, 2007. The work conducted in this study showed that the degradation being observed at Site A was an abiotic process (not biological), which likely involves the presence of the mineral magnetite in soils. Note that the predominant degradation process does not "degrade through" vinyl chloride, which is no longer monitored at this site given the historical lack of detections that led to the OU2 ROD not selecting this compound as a COC.

Since September 2008 when the "first line" of extraction wells was shut off, some wells have shown decreased concentrations while others have, in some periods, shown increased concentrations (see Figures 6-7, 6-8, 6-9, and 6-10). Collectively, the cis-1,2-DCE water quality trends evident on Figures 6-7 through 6-10 indicate the plume has essentially stabilized. Historically, the contingency locations (the four 900-series wells located along the north side of County Road I) have peaked and now show stable or decreasing trends at concentrations below the cis-1,2-DCE cleanup level of 70 µg/L (Figure 6-10); however, during FY 2018 contingency location 01U902 had a cis-1,2-DCE concentration of 92 µg/L while all other contingency locations remained below the cleanup level. Further monitoring will be completed to evaluate trends.

Specifically, concentrations of cis-1,2-DCE in 01U901 and 01U903 have been at or near non-detect since 2008 and basically throughout their history. The concentrations of cis-1,2-DCE in 01U902 had stabilized between 15 and 20 μ g/L by June 2013. Well 01U902 was 29 ug/L (2016), 35 ug/L (2017), and 92 ug/L (2018). Two more sampling rounds (2019 and 2020) will be collected to confirm trend. The concentration of cis-1,2,-DCE in 01U904, which increased to a peak of 57 μ g/L in June 2013, decreased steadily through FY 2014 and now appears to have stabilized between approximately 20 and 30 μ g/L. The cis-1,2-DCE concentration at 01U904 was 27 μ g/L in June 2017 and was non-detect in 2018. 01U904 is located directly downgradient of the two highest-concentration wells in June 2017: 01U157 and 01U355.

Concentrations of cis-1,2-DCE at EW-8 have been stable near non-detect since December 2012. Concentrations of cis-1,2-DCE at EW-7 peaked just above the cleanup level in December 2012 and have steadily declined to the June 2017 concentration of 11 μ g/L. At EW-5, cis-1,2-DCE concentrations appeared to have stabilized below the cleanup level; however, in June 2017 the cis-1,2-DCE concentration increased to 200 μ g/L and increased again in 2018 to 300 μ g/L. A generally increasing trend has been observed at EW-6 since 2012. The reason for this is not clear, but continued monitoring of EW-6 will be performed. In addition, a call with be scheduled to discuss a path forward regarding the groundwater plume at Site A..

In the monitoring wells located between the two rows of extraction wells (Figure 6-8), concentrations of cis-1,2-DCE appeared to have stabilized or to have been on a declining trend. 01U139, currently the well with the highest concentration of cis-1,2-DCE at Site A, had a peak concentration of 510 μ g/L in June 2013, and appeared to have stabilized between 240 and 350 μ g/L. However, in June 2017, the cis-1,2-DCE concentration increased to 540 g/L and increased again in 2018 to 710 μ g/L. Future monitoring will be evaluated to confirm the overall trend. 01U140, after showing three slight exceedances of the cleanup level in 2011 and 2012, has shown a steadily declining cis-1,2-DCE concentration to non-detect in 2018. 01U157 had two slight exceedances of the cis-1,2-DCE cleanup level in 2011 and 2012 and appeared to have stabilized between 18 and 25 μ g/L; however, the cis-1,2-DCE concentration in June 2017 increased to 380 μ g/L and was non-detect in 2018. Future monitoring will be evaluated to confirm the overall trend.

01U158 had a peak cis-1,2-DCE concentration of 410 μ g/L in April 2011, but had since stabilized between 28 and 67 μ g/L. The observed cis-1,2-DCE concentration of 80 μ g/L in June 2016 was the first exceedance of the cleanup level at 01U158 since December 2011. The June 2017 concentration

decreased to 13 μ g/L and the 2018 concentration was consistent at 12 μ g/L. The overall trend at this location still appears to be stable.

In EW-1 through EW-4 (Figure 6-7), concentrations of cis-1,2-DCE have been at or near non-detect since 2010 or earlier. In summer 2018, samples were collected from EW-2 and EW-3 (sampling has been discontinued at EW-1 and EW-4, as discussed in Section 6.1). The concentration of cis-1,2-DCE was 1.0 μ g/L in EW-3 and non-detect in EW-2.

In summary, the cis-1,2-DCE plume has largely stabilized following shutdown of EW-1 through EW-4 in 2008. Most importantly, contingency locations 01U901, 01U903, and 01U904 along the north side of County Road I show stable or decreasing trends at concentrations below the cis-1,2- DCE cleanup level of 70 µg/L (despite 01U904 being located directly downgradient of EW-6). The cis-1,2-DCE concentration in 01U902 increased slightly in 2016, 2017, and again in 2018 to above the cleanup level and will require continued monitoring to assess this potential upward trend. Hence the collective trend suggests that the slight uptrend at EW-6 merely reflects a slight shifting of the axis of the plume in the "cross-plume" direction, which also likely explains the greater variability that is evident in two other wells near the axis of the plume (01U157 and 01U139).

Were any trigger levels exceeded at any of the contingency locations?

Yes. The four contingency locations are 01U901, 902, 903 and 904, which are the four monitoring wells located along the north side of County Road I. The trigger level is equal to groundwater cleanup levels and 01U902 exceeded the cis-1,2-DCE cleanup level in FY 2018. The other three contingency locations did not have any detections of COCs exceeding their respective cleanup levels in these four wells in FY 2018 (Table 6- 2). As noted previously, 01U901 and 01U903 have been at or near non-detect for cis-1,2-DCE since 2008 and basically throughout their history. Concentrations of cis-1,2-DCE in 01U904 show a stable or slightly decreasing trend with cis-1,2-DCE concentrations below the cleanup level of 70 µg/L.

The Site A Shallow Groundwater: Monitoring and Contingency Plan (Wenck 2008b) noted that if the groundwater trigger is exceeded, three key contingency actions are required:

- 1. Army will contact the well owner at 1783 Pinewood Drive to verify the well remains out of service (and will do this annually for as long as the trigger is being exceeded);
- 2. Army will prepare and submit a plan to address the exceedance to the USEPA and MPCA for approval; and
- 3. Army will prepare and submit a plan to evaluate the indoor air pathway.

The third action was perhaps the most critical item, as no soil vapor sampling had ever been conducted at Site A and increasing VOC groundwater concentrations in any of the wells north of County Road 1 would raise the question of whether these increases could cause an increase in soil gas VOC concentrations leading to a vapor intrusion risk. A vapor intrusion report had been prepared previously: Off-TCAAP Vapor Intrusion Pathway Analysis, Operable Unit 1, Operable Unit 3, and Operable Unit 2 (Site A) prepared by Tecumseh/Wenck Installation Support Services, May 2005. This report concluded that the vapor intrusion pathway for the offsite Site A plume was incomplete, since the concentrations in groundwater were below the USEPA generic screening criteria. However, no actual soil vapor sampling was conducted for that report. In December 2012, the MPCA requested that soil vapor sampling be conducted, since their 2008/2010 vapor intrusion guidance is newer than the 2005 report, and since that

guidance states that groundwater screening levels should not be used as a single line of evidence for decisions regarding vapor intrusion risk. Based on this MPCA request, the Army prepared an investigation QAPP, which was approved by the USEPA and MPCA in June 2013, and then conducted the vapor intrusion investigation work in July 2013. This work was documented in Site A Vapor Intrusion Investigation Report (Wenck 2014), which received regulatory consistency approval in FY 2014. The report concluded that no significant VOC concentrations are present in soil gas near the 14 samples collected (10 of which were located along the north side of County Road I), and that there is no significant soil vapor risk. Hence, the third contingency action has already been completed and was ultimately found not to be of concern.

With regard to the first contingency action, according to the TCAAP Well Inventory and MDH records the well at 1783 Pinewood Drive was sealed in 2014. No further action is required in regard to this contingency action.

The only remaining contingency action is the second. However, the need to "address the exceedance" would be driven primarily by either a groundwater receptor or a vapor receptor, and since these pathways have been eliminated as discussed above, a slight exceedance of the trigger does not require any specific remedial action, especially given the strong degradation evident at the site (i.e., the distance any slight exceedance would carry downgradient from the "900" wells would be expected to be minimal). The contingency locations will be sampled according to the monitoring plan in FY 2019 and the data will be evaluated to determine whether further action is required.

Can it be determined whether MNA is an adequate long-term remedy for Site A in lieu of groundwater extraction and discharge? (If MNA is determined to be adequate, a recommendation to formally change the remedy should be made.)

Yes. In the November 11, 2015 Technical Memorandum, the Army recommended that MNA be implemented as the long-term remedy for Site A in lieu of groundwater extraction and discharge. This recommendation was made in consideration of three key facts: 1) the vapor intrusion investigation concluded that there is no significant soil vapor risk north of County Road I; 2) the only known groundwater receptor between Site A and Rice Creek (1783 Pinewood Drive) was sealed in 2014; and 3) 1,4-dioxane was not found to be present in Site A shallow groundwater. ROD Amendment #6 was approved in FY 2018, changing the remedy to MNA for Site A shallow groundwater.

Annual monitoring of Site A wells for VOCs will continue in FY 2019 according to the monitoring plan in Appendix A.

Do additional remedial measures need to be addressed? No.

7 OPERABLE UNIT 2: SITE C SHALLOW GROUNDWATER

Impacts to Site C shallow groundwater had not occurred at the time of the 1997 OU2 ROD. In FY 1997, the U.S. Army Environmental Command sponsored a technology demonstration to phyto-remediate Site C lead-contaminated soil. During the growing seasons, ethylenediaminetetraacetic acid and acetic acid were applied to the soils to improve metals uptake by the crops and had the unintended consequence of causing migration of lead from the soils into the shallow groundwater present within a few feet from the ground surface. In FY 2000, the MPCA took enforcement action, requiring the Army implement corrective actions. Initially, the Army installed a groundwater recovery trench to contain the lead plume (operated between November 2000 and July 2001). On July 6, 2001, the Army began operating three extraction wells to contain the plume (replacing recovery trench operation), with discharge of extracted groundwater (treated as necessary) to a POTW. In FY 2004, a Stipulation Agreement was signed that resolved the enforcement action and directed that response actions be conducted under the authority of the FFA. The 2007 OU2 ROD Amendment #1 incorporated the existing groundwater extraction system as the final remedy.

On November 13, 2008, the groundwater system was shut off (with regulatory approval), since the lead concentrations in the three extraction wells had been below the groundwater cleanup level since March 2008 (i.e., the area of lead concentrations exceeding the groundwater cleanup level was not reaching the extraction wells and so operation of the extraction system was no longer required for plume containment). The recommendation to de-energize the extraction system was presented in the Site C Groundwater Extraction System Evaluation Report (Evaluation Report; Wenck 2008c) and was approved by the USEPA and MPCA in November 2008. The 2007 ROD Amendment #1 prescribes four major components of the remedy, and until a decision is made to formally change the remedy, the original components of ROD Amendment #1 will be retained in this section (with discussion that is appropriate to the current remedy implementation status).

The Evaluation Report also presented the monitoring plan to be implemented at the point that the extraction wells were shut off and presented the contingency actions that will be taken by the Army if groundwater and/or surface water monitoring indicates that any of the stated trigger points are exceeded. These monitoring and contingency actions have been incorporated into the APR, and thus any changes to monitoring and contingency actions must be approved by the USEPA and MPCA through revisions to the APR.

At some point, the remedy could be formally changed. This change would presumably require an ESD, at a minimum, or possibly a ROD amendment. However, given that groundwater cleanup levels may be reached throughout Site C within a few years, it may not be necessary to go through the process of formally changing the remedy. Evaluation in future APRs will ultimately determine whether the USEPA, MPCA, and Army should formally change the remedy or, possibly, whether the site should just be closed.

7.1 Remedy Component #1: Groundwater and Surface Water Monitoring

Description: "The existing Site C groundwater monitoring program will be revised as needed." "A new surface water monitoring plan will be prepared" (OU2 ROD Amendment #1, page 39-40).

Performance Standard (how do you know when you're done):

When a performance groundwater and surface water monitoring program has been established and ongoing monitoring is in compliance with the program.

Is this remedy component being implemented?

Yes. Table 7-1 summarizes the performance monitoring requirements, the implementing parties, and the documents that contain the monitoring plans. FY 2018 monitoring was conducted in accordance with the Monitoring Plans included in Appendix A. The water quality monitoring locations and frequencies are also summarized on Figure 7-1, and any deviations explained in Appendix C.2.

Were the monitoring requirements for this remedy met?

Groundwater samples were collected as per the FY 2018 monitoring plan in Appendix A.

Is any sampling proposed prior to the next report?

Yes. Groundwater and surface water monitoring at Site C will be in accordance with the monitoring plans shown in Appendix A.1 and A.3, respectively.

Are any changes or additional actions required for this remedy component? No.

7.2 Remedy Component #2: Groundwater Containment

Description: "Three extraction wells, EW-1 through EW-3, will continue collecting contaminated groundwater" (OU2 ROD Amendment #1, page 38).

Is this remedy component being implemented?

No. As discussed previously, because the area of lead concentrations that exceed the groundwater cleanup level no longer extends to the extraction wells, the extraction system is no longer operating and this remedy component is not currently being implemented.

7.3 Remedy Component #3: Discharge of Extracted Water

Description: "Extracted groundwater will be pretreated onsite (as necessary) to meet the sanitary sewer discharge limit" (OU2 ROD Amendment #1, page 38).

Is this remedy component being implemented?

No. As discussed previously, because the area of lead concentrations that exceed the groundwater cleanup level no longer extends to the extraction wells, the extraction system is no longer operating and this remedy component is not currently being implemented.

7.4 Remedy Component #4: Land Use Controls

Description: "LUCs will be established to protect the groundwater extraction, treatment, and monitoring system and to prohibit the drilling of water supply wells within the contaminated portion of the Unit 1 aquifer" (OU2 ROD Amendment #1, page 39).

Performance Standard (how do you know when you're done):

For initial implementation, when the USEPA and MPCA have provided consistency approval for an OU2 LUCRD document. Implementation will continue until such time that the groundwater concentrations are below the cleanup levels.

Has a LUCRD document been approved to address LUC issues for OU2, including Site C groundwater, and is it being implemented?

Yes. The USEPA and MPCA approved the OU2 LUCRD in September 2010 and it is being implemented by the Army. Revision 5 of the OU2 LUCRD was approved by the USEPA and MPCA in March 2018. Site C is part of the 108 acres planned for transfer to Ramsey County as described in Revision 5. The LUCs for groundwater and a soil cover for Site C remain in place.

Was an annual site inspection for LUCs conducted in FY 2018?

Yes. On July 30, 2018, the Army, National Guard, and JV conducted the annual inspection of OU2 sites. The checklist that was completed during the inspection is included as Appendix F.

Did the inspection identify any follow-up actions needed to maintain the protectiveness of the LUCs? No.

7.5 Overall Remedy for Site C Shallow Groundwater

Performance Standard (how do you know when you're done):

When the cleanup levels in Table 1 of OU2 ROD Amendment #1 have been attained throughout the areal and vertical extent of the Site C plume.

Has the Site C shallow groundwater remedy been completed (i.e., have the cleanup levels in Table 1 of the OU2 ROD Amendment #1 been attained throughout the areal and vertical extent of the Site C plume)?

No. Table 7-2 presents FY 2018 groundwater quality data and highlights the values that exceed the lead cleanup level. Surface water quality data are presented on Table 7-3. Figure 7-2 presents groundwater elevation contours based on measurements in summer 2018. Figure 7-3 shows the lead results for groundwater and surface water locations. Figures 7-4 and 7-5 show the lead concentrations plotted on geologic cross sections for Site C to illustrate the vertical extent of contamination (the cross-section locations are illustrated on Figure 7-3).

In FY 2018, lead exceeded the groundwater cleanup level of 15 µg/L in two monitoring wells located near the source area. The lead concentrations at MW-13 and MW-14 were detected at 150 µg/L and 61 µg/L in summer 2018. The water quality trends (dissolved lead) for wells nearest the source (MW-3, MW-13, MW-14, and MW-15) are shown on Figure 7-6. As Figure 7-6 shows, the variable concentrations observed at individual wells in FY 2018 has occurred throughout recent years for the four source area wells. Overall, lead concentrations at source area wells have decreased significantly in the last 10 years indicating substantial progress towards reaching groundwater cleanup levels.

Surface water monitoring results were all below the surface water cleanup level in FY 2018.

Were any trigger levels exceeded at any of the contingency locations?

No. The Site C contingency locations and trigger levels are shown in Table 7-4. Depending on the location, the trigger level is either equal to the groundwater cleanup level or a surface water cleanup level. Groundwater and surface water results (Table 7-2 and Table 7-3) show that trigger levels were not exceeded in FY 2018. If a trigger level were exceeded, the Army would implement contingency action(s) specified in the footnotes to Table 7-4.

Can it be determined whether a formal change to the remedy should be made (to eliminate the groundwater extraction and discharge components) or, possibly, whether the Site should just be closed?

No. Two wells still exceeded the cleanup level. Additional monitoring should be conducted before this determination is made.

Do additional remedial measures need to be addressed?

No. Site C wells have had stable COC concentrations and the existing groundwater plume does not appear to be migrating. Continued monitoring of the site will be performed to evaluate when closure for Site C is appropriate.

8 OPERABLE UNIT 2: SITE I SHALLOW GROUNDWATER

VOCs have been identified in Unit 1 (perched aquifer) at Site I. The selected remedy in the OU2 ROD (1997) consisted of four components: Groundwater monitoring, Groundwater extraction, POTW discharge, and Additional characterization.

The additional investigation and Predesign Investigation Work Plan (Work Plan) were completed in FY 2000. Based on these documents, the proposed remedy was to consist of a dual phase vacuum extraction system, which combined groundwater extraction with soil vapor extraction, to be installed beneath Building 502. A dual phase extraction pilot test subsequently determined that the technology was not feasible due to the low Unit 1 permeability. OU2 ROD Amendment #2 (2009) revised the requirements for shallow groundwater to groundwater monitoring, additional characterization and LUCs. These three major remedy components are evaluated in the following sections

8.1 Remedy Component #1: Groundwater Monitoring

Description: " Groundwater monitoring to track remedy performance." (OU2 ROD, page 3).

Performance Standard (how do you know when you're done):

When a monitoring plan has been established and ongoing monitoring is in compliance with the plan.

Is the remedy component being implemented?

Yes. Table 8-1 summarizes the performance monitoring requirements, the implementing parties, and documents containing monitoring plans. Appendix A summarizes the FY 2018 monitoring plan and any deviations are explained in Appendix C.2.

As previously approved by the USEPA/MPCA, all Site I (Building 502) Unit 1 monitoring wells were abandoned in FY 2014 prior to the demolition of Building 502. Only well 01U667 is scheduled to be replaced, which could be delayed beyond FY 2019 due to the extent of pending regrading associated with planned site redevelopment. Because well 01U667 was not replaced in FY 2018, no groundwater sampling was conducted during FY 2018. Once reinstalled, monitoring well 01U667 will be sampled annually in accordance with the FY 2018 - FY 2022 Monitoring Plan (Appendix A.1). Figure 8-1 presents a site plan for Site I, including the former locations of the now abandoned monitoring wells and a cross section location presented on Figure 8-2.

Is any groundwater sampling proposed prior to the next report?

Yes, although it is contingent on completion of grading activities in this area and subsequent reinstallation of monitoring well 01U667. Groundwater monitoring at Site I will be in accordance with the monitoring plan shown in Appendix A.1.

Are any changes or additional actions required for this remedy component?

Yes. Monitoring well 01U667 must be reinstalled after grading activities have been completed.

8.2 Remedy Component #2: Additional Investigation

Description: "Additional characterization of the Unit 1 and Unit 2 soil and groundwater." (OU2 ROD, page 3).

Performance Standard (how do you know when you're done):

When the work has been completed according to an agency approved work plan.

Has the remedy component been implemented?

Yes. Additional investigation results were included in Appendix A of the Predesign Investigation Work Plan (January 1999) which resulted in a pilot study to evaluate dual phase vacuum extraction technology applicability. The resultant Predesign Investigation Report (March 2001) concluded that neither dual phase extraction nor groundwater extraction is feasible at Site I. The May 2009 OU2 ROD Amendment removed the groundwater extraction and POTW discharge component of the remedy.

Are any changes or additional actions required for this remedy component? No.

8.3 Remedy Component #3: Land Use Controls

Description: "LUCs will be established to protect the groundwater extraction, treatment, and monitoring system and to prohibit the drilling of water supply wells within the contaminated portion of the Unit 1 aquifer." (OU2 ROD Amendment #1, page 39).

Performance Standard (how do you know when you're done):

Implementation of the land use controls will continue until such time that the groundwater concentrations are below the cleanup levels.

Has a LUCRD document been approved to address land use control (LUC) issues for OU2, including Site I groundwater, and is it being implemented?

Yes. The USEPA and MPCA provided consistency approval for the OU2 LUCRD in September 2010, and the LUCRD is being implemented by the Army. Subsequent revisions to the LUCRD have not changed the groundwater LUCs for Site I. Following additional soil investigation and remediation completed by Ramsey County in 2014/2015, the site is now suitable for unrestricted use/unlimited exposure and soil LUCs at Site I are no longer necessary. The USEPA and MPCA provided consistency approval for the OU2 LUCRD Revision 5 in March 2018, which formally removes Site I soil LUCs.

Was an annual site inspection for land use controls conducted in FY 2018?

On July 30, 2018, the Army, National Guard, and JV conducted the annual OU2 site inspection. The completed checklist is included as Appendix F.

Did the inspection identify any follow up actions needed to maintain the protectiveness of the LUCs? No.

8.4 Overall Remedy for Site I Shallow Groundwater

Performance Standard (how do you know when you're done):

When the cleanup levels in Table 1 of the OU2 ROD have been attained throughout the areal and vertical extent of the Site I plume (OU2 ROD, page 55).

Has the Site I shallow groundwater remedy been completed (i.e., have the cleanup levels in Table 1 of the OU2 ROD been attained throughout the areal and vertical extent of the Site I plume)?

No. Groundwater monitoring was not conducted in FY 2018 due to the approved abandonment of all Unit 1 wells related to Site I demolition activities; however, the most recent groundwater quality data (from FY 2013) suggests that cleanup levels have not been attained. Table 8-2 presents FY 2013 data and highlights values which exceeded the cleanup level. The concentration of TCE in former well 01U632 had decreased over time but was still above the cleanup level in FY 2013. Results from the sampling of well 01U667 indicated concentrations of 1,2 dichloroethene and vinyl chloride remained above the cleanup levels. Figure 8-3 presents the FY 2013 Site I shallow groundwater TCE and vinyl chloride sample results.

Do additional remedial measures need to be addressed?

Yes. As requested by Orbital ATK (now Northrop Grumman) in their letter dated August 12, 2013 and approved by the USEPA and MPCA on August 14, 2013, all Unit 1 monitoring wells were abandoned in 2014. In accordance with the Orbital ATK request and agency approval, monitoring well 01U667 will be reinstalled at the same location and depth following completion of redevelopment-related grading to occur at former Building 502, with expected installation to be in 2018. However, due to the significant extent of grading to occur, reinstallation of 01U667 could be delayed.

9 OPERABLE UNIT 2: SITE K SHALLOW GROUNDWATER

VOC contamination has been identified in Unit 1 (perched aquifer) at former Building 103. The limits of the VOC plume in the perched groundwater have been defined to be beneath and immediately northwest of former Building 103.

The remedy selected in the OU2 ROD consisted of seven components that incorporated the existing groundwater extraction trench and air stripper, which began operation in August 1986. The remedy also included additional investigation of the unsaturated soils beneath the building slab. OU2 ESD #1 added LUCs as a remedy component in 2009.

9.1 Remedy Component #1: Groundwater Monitoring

Description: "Groundwater monitoring to track remedy performance." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When a monitoring plan is established, and monitoring is in compliance with the plan.

Is the remedy component being implemented?

Yes. Table 9-1 summarizes the performance monitoring requirements, the implementing parties, and the monitoring plan documents. Appendix A summarizes the FY 2018 monitoring plan and any deviations are explained in Appendix C.2.

Water levels are collected annually from monitoring wells and bundle piezometers in the vicinity of the groundwater collection and treatment system. In FY 2014, 15 Unit 1 monitoring wells were permanently abandoned, as approved by the USEPA/MPCA on August 14, 2013 and May 7, 2014. In FY 2017, one Unit 1 monitoring well (01U047) was permanently abandoned as approved by the USEPA/MPCA in September 2017. The monitoring wells currently included in the Site K Monitoring Plan were sampled in June/July 2018. Figure 9-1 presents the sampling and water level monitoring locations, as well as the location of the monitoring wells that have been abandoned. Figure 9-1 also shows the cross-section alignment.

Three of the wells abandoned in 2014 (01U608, 01U609, and 01U611) were scheduled to be reinstalled in spring 2017; however, the schedule has been extended due to delays associated with site redevelopment. Once reinstalled, the wells will have the same monitoring requirements as prior to abandonment. Wells 01U608 and 01U609, once reinstalled, will be added to the water level monitoring list and well 01U611 will be added to the annual water quality sampling list. Monitoring well 01U047 was permanently abandoned in FY 2017 for site redevelopment activities and will not be reinstalled once the redevelopment activities are completed.

Is any groundwater sampling proposed prior to the next report?

Yes. Groundwater monitoring at Site K will be in accordance with the monitoring plan shown in Appendix A.1.

Are any changes or additional actions required for this remedy component?

Yes. Wells 01U608, 01U609, and 01U611, which were abandoned in 2014, are scheduled to be reinstalled once construction activities associated with site redevelopment are completed.

9.2 Remedy Component #2: Sentinel Wells

Description: "Installation of sentinel wells at the bottom of Unit 1 and top of Unit 3." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the wells have been installed according to a regulator approved work plan.

Is the remedy component being implemented?

Yes. The Upper Unit 3 sentinel well was installed in February 2000 to monitor potential VOCs migration through the Unit 2 till aquitard into the Unit 3 aquifer.

Existing piezometers were used to accomplish the deep Unit 1 sentry monitoring. Piezometers 01U625D, 01U626D, 01U627D, and 01U628D were used since they monitor the Unit 1 aquifer base near the trench. The issue is the potential for Dense Non-Aqueous Phase Liquids (DNAPLs) to migrate beneath the trench along the Unit 1/Unit 2 interface. These four piezometers are screened at that interface. Figure 9-1 shows the location of the Upper Unit 3 sentinel well (03U621) and the piezometers.

What are the results of the Unit 1 piezometer and Unit 3 sentinel well sampling?

The piezometers (Unit 1 sentinel wells) were sampled in March 2000 with results showing no DNAPL presence at the Unit 1/Unit 2 interface, as discussed in the FY 2000 APR. This was a one-time sampling event, as required by the MPCA/USEPA approved Predesign Investigation Work Plan, Site K, TCAAP, CRA, February 1999, and as documented in the Predesign Investigation Report, Site K, TCAAP, CRA, December 2001, for which concurrence was received.

The Unit 3 sentinel well (03U621) was sampled in March, July, and September 2000 and in January 2001 for the quarterly sampling required by the Work Plan. Subsequently, the well was incorporated into the regular TCAAP monitoring plan. The well was sampled in June 2018 for FY 2018 with results presented in Table 9-7. No Site K COCs were detected in the Unit 3 sentinel well at concentrations above the method detection limit. However, the 03U621 sample reported a 1,4-dioxane concentration of 8.3 (duplicate 8.4) μ g/L. This is likely related to the presence of 1,4-dioxane in Unit 3 groundwater throughout the western portion of TCAAP, as opposed to a release from Site K.

Are any changes or additional actions required for this remedy component? No.

9.3 Remedy Component #3: Hydraulic Containment

Description: "Use of existing interceptor/recovery trench to contain the plume and remove impacted groundwater." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the trench is operating as designed and capturing all groundwater exceeding the cleanup levels as presented in Table 1 of the OU2 ROD, and further described below.

Is the remedy component being implemented?

Yes. The groundwater collection system continues to provide capture (as described later) of the Unit 1 groundwater, upgradient of the trench and beneath the former Building 103 footprint, as designed. In FY 2014, the Building 103 slab was removed as part of the site redevelopment activities.

Is the system providing hydraulic capture of the plume?

Yes. Water level data are presented in Table 9-3. Figure 9-2 presents a plan view of the groundwater contours from the June 2018 round of groundwater level measurements. At nested wells, the numerically lowest water elevation was used to create the plan view contours. Monitoring wells downgradient (i.e. 01U627) of the extraction trench show consistently higher water levels than those near of the trench (i.e. 01U626). This demonstrates that the horizontal hydraulic gradient has been reversed toward the extraction trench due to system operation.

Vertical capture was also effective as illustrated on Figure 9-3. As seen in the figure, groundwater both upgradient and downgradient of the trench is captured and collected. The upward gradient exhibited on the downward gradient side of the trench (01U626) indicates that groundwater does not migrate below the trench. The monitoring coverage provided by the bundle piezometers, demonstrates complete vertical and horizontal hydraulic capture.

Upgradient well (01U625C) is obstructed. The cause of the obstruction is unknown. An unsuccessful attempt was made to remove the obstruction the spring 2017 and again in the spring of 2018. Well 01U625C is not critical in the collection trench flow evaluation. Historically, this well has maintained a similar groundwater elevation as 01U625B and 01U625D (see Appendix D). Based on 2016, 2017, and 2018 groundwater elevation data showing the return to typical levels, the abandonment of 01U625C, without subsequent replacement, is recommended.

Figure 9-4 presents the TCE concentrations from the 2018 annual sampling event. The plume was originally defined based on data from all of the monitoring wells. The plume was then refined based on the results of the 2014 geoprobe investigation. The current monitoring well network is used to confirm the plume contours and measure the progress of remediation. Thus, the contours on Figure 9-4 were drawn with consideration of the extensive historical data, specifically the 2014 data from the geoprobe investigation.

Are any changes or additional actions required for this remedy component?

Not at this time. Two monitoring wells (01U604 and 01U628) historically used to monitor hydraulic capture were abandoned in 2014 because of site redevelopment activities. However, existing wells (01U603, 01U612, 01U615, 01U617, 01U621, 01U625, 01U626 and 01U67) located up and down gradient of the collection trench provide adequate coverage for shallow groundwater hydraulic and water quality monitoring and verify hydraulic containment at Site K. Additional monitoring (including the need for additional monitoring wells) will be evaluated upon completion of redevelopment plans for the area.

9.4 Remedy Component #4: Groundwater Treatment

Description: "Treatment of contaminated groundwater using air stripping." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the air stripping facility is treating water to the cleanup standards.

Is the remedy component being implemented?

Yes. During FY 2018, the treatment system functioned and was operational 96% of the time. During FY 2018, a regular maintenance schedule was maintained. Appendix G.1 summarizes operational data and events at the groundwater extraction and treatment system.

Are any changes or additional actions required for this remedy component? No.

9.5 Remedy Component #5: Treated Water Discharge

Description: "Discharge of treated groundwater to Rice Creek." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the system is operating as designed and the treated water discharges to the storm sewer that outlets to Rice Creek. Treated water is required to meet the substantive requirements of Document No. MNU0009579 (MPCA), which contains the state-accepted discharge limits for surface water. Sampling and analysis are performed to monitor performance (see below).

Is the remedy component being implemented?

Yes. See discussion in Section 9.6.

Are any changes or additional actions required for this remedy component? No.

9.6 Remedy Component #6: Discharge Monitoring

Description: "Monitoring to track compliance with discharge requirements." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When a monitoring plan is established and is being implemented in accordance with the plan.

Is the remedy component being implemented?

Yes. Treatment system monitoring consisted of quarterly influent and effluent sampling. Influent and effluent analytical results are presented in Table 9-4 (organics) and Table 9-5 (inorganics). The discharge met the treatment requirements during FY 2018. As report in the FY 2017 APR, infrequent exceedances of the phosphorus and zinc discharge criteria occurred but no cause was determined. Sampling procedures were modified to thoroughly flush all sampling piping before effluent samples are collected. This procedure has apparently reduced the potential that particles accumulating on the piping are not being carried over into the samples causing the exceedances of zinc and phosphorus limits.

Are any changes or additional actions required for this remedy component? No.

9.7 Remedy Component #7: Additional Investigation

Description: "Additional characterization of the unsaturated Unit 1 soil." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the additional investigation has been completed according to a regulator approved work plan.

Is the remedy component being implemented?

Yes. The Work Plan was approved in FY 1999. A report of the investigation results received a consistency determination from the Agencies on December 6, 2001. The report defined the extent of VOC contaminated soils beneath Building 103 and refined the location of the source area. The report and subsequent follow up sampling resolved anomalous dissolved zinc, lead, and nickel data at two monitoring wells. Zinc, lead, and nickel are no longer groundwater concerns.

Are any changes or additional actions required for this remedy component? No.

9.8 Remedy Component #8: Land Use Controls

Description: "LUCs will be established to protect the groundwater extraction, treatment, and monitoring system and to prohibit the drilling of water supply wells within the contaminated portion of the Unit 1 aquifer." (OU2 ROD Amendment #1, page 39)

Performance Standard (how do you know when you're done):

Implementation of the land use controls will continue until such time that the groundwater concentrations are below the cleanup levels.

Has a LUCRD document been approved to address land use control (LUC) issues for OU2, including Site K groundwater, and is it being implemented?

Yes. The USEPA and MPCA provided consistency approval for the OU2 LUCRD in September 2010 and it is being implemented by the Army. Subsequent revisions to the LUCRD have not affected the groundwater LUCs for Site K.

Was an annual site inspection for land use controls conducted in FY 2018?

On July 30, 2018, the Army, National Guard, and JV conducted the annual inspection of OU2 sites. The checklist that was completed during the inspection is included as Appendix F.

Did the inspection identify any follow-up actions needed to maintain the protectiveness of the LUCs? No.

9.9 Overall Remedy for Site K

Performance Standard (how do you know when you're done):

Once the cleanup levels in Table 1 of the OU2 ROD have been attained throughout the areal and vertical extent of the Site K plume (OU2 ROD, page 55).

Has the Site K shallow groundwater remedy been completed (i.e., have the cleanup levels in Table 1 of the OU2 ROD been attained throughout the areal and vertical extent of the Site K plume)?

No. Overall, the remedy for Site K continued to operate consistent with past years and in compliance with the required performance criteria.

Table 9-6 presents the VOC mass removal and monthly flow rates. The treatment system captured and treated 4,667,972 gallons of water resulting in the removal of 7.9 pounds of VOCs from the aquifer in FY 2018. The cumulative VOC mass removal is 389 pounds of VOCs.

As shown on Figure 9-4, TCE concentrations ranged from non-detect to 1,500 µg/L. In general, Site wide TCE concentrations were lower than those reported in 2016. Monitoring wells 01U611 and 01U615 monitored the core of the plume. However, well 01U611 was abandoned in 2014 for site redevelopment activities and will be reinstalled once the redevelopment activities are completed; no 01U611 data is available for FY 2018. Prior to abandonment, TCE concentrations at monitoring well 01U611 had been relatively stable over the previous seven years, ranging from 4,900 µg/L to 11,000 µg/L.

The TCE concentration at well 01U615 slightly increased from 1,200 µg/L in FY 2017 to 1,500 µg/L in FY 2018. The FY 2018 concentration of TCE at 01U615 is still low compared with historical concentrations from the last ten years of sampling, which have ranged from 1,200 µg/L to 6,500 µg/L. Figure 9-5 shows TCE and total 1,2-dichloroethene versus time for 01U615. Water levels measured during the FY 2018 monitoring were 1.8 feet lower at 01U615 compared to FY 2017 elevations. This well has historically exhibited fluctuating groundwater elevations.

Concentrations of TCE in monitoring well 01U603 had always been non-detect (less than 1.0 μ g/L). However, in May 2014, TCE was detected at a 2,000 μ g/L in 01U603. Well 01U603 was resampled in July 2014 (5,600 μ g/L) and September 2014 (4,600 μ g/L). The July and September results confirmed that elevated concentrations of TCE and other VOCs are present in the well. However, groundwater samples collected downgradient of 01U603 as part of a Site K geoprobe investigation in September 2014 were non-detect for TCE and confirmed capture by the collection trench. The geoprobe investigation in 2014 determined that historically high groundwater levels in April and May 2014 likely mobilized TCE in the former storm sewer bedding that was present underneath the former building footprint. The geoprobe results were submitted to the USEPA and MPCA in a letter dated February 3, 2015. Since that time, TCE concentrations in 01U603 have steadily declined, to 1200 μ g/L (FY 2015), 30 μ g/L (FY 2016) and now 3.3 μ g/L (FY 2017). In FY 2018 the TCE concentration slightly increased from 3.3 μ g/L (FY 2017) to 5.1 μ g/L.

Well 01U617 continues to exhibit low and relatively consistent concentrations of 1,2-dichloroethene downgradient of the groundwater collection system's capture zone. The concentration at this well was consistent with those measured in FY 2014 and previous years. The detected 1,2-dichloroethene concentration is below the cleanup level for Site K.

Do additional remedial measures need to be addressed? No.

9.10 Other Related Activity in FY 2018

In March 2015, the USEPA and MPCA requested sampling and analysis for 1,4-dioxane to be included in the annual sampling event for Site K. The analysis was added to all regularly-scheduled monitoring wells in 2015 and 2016. Due to low 1,4-dioxane concentrations in Unit 1 wells (less than 1 μ g/L), no Unit 1 wells were required to be sampled for 1,4-dioxane in FY 2017. Unit 3 monitoring well, 03U621 had a 1,4-dioxane concentration exceeding the HRL in 2015, 2016, and 2017, therefore, monitoring well 03U621 was sampled for 1,4 dioxane in FY 2018. The 1,4-dioxane concentration at 03U621 decreased from 9.3 μ g/L in FY 2016 to 8.4 μ g/L in FY 2017 to 8.4 μ g/L in FY 2018. As mentioned above, the presence of 1,4-

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

.

dioxane in 03U621 is likely related to its presence in Unit 3 groundwater throughout the western portion of TCAAP, as opposed to a release from Site K.

Table 9-7 presents the FY 2018 1,4-dioxane sampling results. No Federal MCL has been established for 1,4-dioxane; however, the MDH established a HRL value of 1.0 μ g/L as shown on Table 9-7.

10 OPERABLE UNIT 2: BUILDING 102 SHALLOW GROUNDWATER

The former Building 102, located as shown on Figure 10-1, was constructed in 1942 and used periodically until the 1980s for production of small caliber ammunition and various other munitions components. Between March 2002 and February 2004, shallow (Unit 1) groundwater contamination was discovered emanating from beneath Building 102 (discovered during Phase I and Phase II Environmental Site Assessment [ESA] in support of future TCAAP property transfer).

Additional groundwater investigation was conducted and is documented in the Groundwater Investigation Report for Building 102 (Wenck and Keres Consulting Inc 2006), approved by the USEPA and MPCA in FY 2006. The Army then proceeded to address the remedy for Building 102 shallow groundwater as a non-time critical removal action under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). To support the Engineering Evaluation/Cost Analysis (EE/CA), additional groundwater investigation was conducted in FY 2007 and FY 2008 to further define the extent and magnitude of groundwater contamination. Delineation was completed and COCs were identified, including TCE and related chlorinated VOCs (TCE was found to be degrading to cis-1,2-DCE and vinyl chloride through abiotic degradation). The EE/CA documenting the additional investigation work and recommending a remedy for Building 102 shallow groundwater was approved by the USEPA and MPCA in FY 2008.

The Army Action Memorandum documenting the final remedy selection for Building 102 groundwater MNA was signed in FY 2009. The remedy also includes LUCs to prohibit installation of water supply wells in the contaminated portion of the Unit 1 aquifer and protect the groundwater monitoring system infrastructure (i.e., monitoring wells). OU2 ROD Amendment #4 formally documented selection of MNA and LUCs for the Building 102 groundwater remedy and thereby added this site to the OU2 remedy.

The decision to proceed with MNA was based on strong evidence from water quality monitoring (i.e., degradation products) and on MPCA microcosm studies which verified abiotic degradation of VOCs in Building 102 groundwater is occurring at substantial rates. Such degradation acts to reduce contaminant mass and mobility by breaking down the contaminants as they migrate. The decision to proceed with MNA was also based on the absence of any groundwater receptors.

10.1 Remedy Component #1: Monitored Natural Attenuation

Description: ""Use of naturally-occurring abiotic degradation to limit plume mobility and to ultimately restore the aquifer" (OU2 ROD Amendment #4, page 4-1).

Performance Standard (how do you know when you're done):

When a monitoring program is established, and monitoring is in compliance with the regulator approved Annual Monitoring Plan.

Is the remedy component being implemented?

Yes. Appendix A summarizes the FY 2018 monitoring plan and any deviations are explained in Appendix C.2. Details of the groundwater monitoring program are discussed in the next section.

10.2 Remedy Component #2: Groundwater Monitoring

Description: "Groundwater monitoring to track remedy performance and to verify that groundwater reaching Rice Creek does not exceed state surface water standards" (OU2 ROD Amendment #4, page 4-1).

Performance Standard (how do you know when you're done):

When a performance groundwater monitoring program has been established and ongoing monitoring is in compliance with the program.

Is this remedy component being implemented?

Yes. Table 10-1 summarizes performance monitoring requirements, implementing parties, and the documents that contain the monitoring plans. The FY 2018 Monitoring Plan is included in Appendix A, documenting the water quality monitoring locations and frequencies. Building 102 groundwater level data collected in summer 2018 are shown as groundwater elevation contours on Figure 10-2. Site K water levels are also contoured to provide a more complete water level map in the Site vicinity. Groundwater quality data collected in FY 2018 are shown in Table 10-2. Groundwater quality data for FY 2018 are also shown for three of the COCs: TCE (Figure 10-3), cis-1,2-DCE (Figure 10-4), and vinyl chloride (Figure 10-5). Figure 10-6 shows the vinyl chloride concentrations plotted on geologic cross sections for Building 102 to illustrate the vertical extent of contamination (the cross-section locations are illustrated on Figure 10-5.)

Monitoring for 1,4-dioxane was repeated during FY 2018 summer sampling to verify that 1,4-dioxane is not a COC in Building 102 shallow groundwater. As shown in Table 10-2, there were no detections of 1,4-dioxane in Building 102 shallow groundwater during summer 2018. Monitoring for 1,4-dioxane will be discontinued in Building 102 shallow groundwater.

Were the groundwater monitoring requirements for this remedy met? Yes.

Is any groundwater sampling proposed prior to the next report?

Yes. Groundwater monitoring at Building 102 will be in accordance with the monitoring plan shown in Appendix A.1.

Are any changes or additional actions required for this remedy component? No.

10.3 Remedy Component #3: Land Use Controls

Description: : "LUCs to restrict installation of water supply wells into the contaminated portion of the Unit 1 aquifer and to protect the infrastructure related to this alternative (monitoring wells)" (OU2 ROD Amendment #4, page 4-2).

Performance Standard (how do you know when you're done):

Implementation of the LUCs will continue until such time that the groundwater concentrations are below the cleanup levels.

Has a LUCRD document been approved to address LUC issues for OU2, including Building 102 groundwater, and is it being implemented?

Yes. The USEPA and MPCA provided consistency approval for the OU2 LUCRD in September 2010 and is being implemented by the Army. Subsequent revisions of the LUCRD have not changed the groundwater LUCs for Building 102.

Was an annual site inspection for LUCs conducted in FY 2018?

Yes. On July 30, 2018, the Army, National Guard, and JV conducted the annual inspection of OU2 sites. The completed checklist during inspection is included as Appendix F.

Did the inspection identify any follow-up actions needed to maintain the protectiveness of the LUCs? No.

10.4 Overall Remedy for Building 102 Shallow Groundwater

Performance Standard (how do you know when you're done):

When the cleanup levels in OU2 ROD Amendment #4 have been attained throughout the areal and vertical extent of the Building 102 plume (OU2 ROD Amendment #4, page 2-13).

Has the Building 102 shallow groundwater remedy been completed (i.e., have the cleanup levels in the table on Page 2-13 of OU2 ROD Amendment #4 been attained throughout the areal and vertical extent of the Building 102 plume)?

No. As shown in Table 10-2, cleanup levels have not been reached throughout the areal extent of the plume and the site cannot be closed. TCE concentrations exceed the cleanup level in three monitoring wells and vinyl chloride exceeds the cleanup level in one monitoring well.

What impact is MNA having on contaminant concentrations?

Natural attenuation continues to occur, with TCE being the primary VOC present in the source area vicinity, and primary degradation products being present in downgradient wells (e.g., primarily cis-1,2-DCE and vinyl chloride in 01L584 and 01U584). Significant changes that were noted in the FY 2018 groundwater quality results include:

- 01U579 and 01U580 (source area): TCE concentration increased marginally in 01U579 and 01U580 from 0.7 μg/L and 1.1 μg/L to 1.5 μg/L and 1.2 μg/L, respectively. Historically, the concentrations in these two wells have shown relatively large increases and decreases.
- 01L582 (further downgradient of the source area): Concentration of cis-1,2-DCE increased (8 µg/L to 16 ug/L), however this well appears to be stable and is still below the cleanup level of 70 ug/L. The vinyl chloride concentration was consistent at 0.26 µg/L, which exceeds the Building 102 cleanup level.
- 01U048 (adjacent to Rice Creek): 1,4 dioxane was not detected in this well in FY 2018. 1,4- Dioxane was detected at 1.1 μg/L in FY 2017, above the MDH HRL of 1.0 μg/L. The 1,4-dioxane concentration increased in the previous three years of monitoring; this well was non-detect for 1,4-dioxane in 2015 and had a concentration of 0.15 μg/L in 2016.

Were any trigger levels exceeded at the contingency location?

No. The contingency location is 01U048, located next to Rice Creek. The trigger level is equal to groundwater cleanup levels or, in the case of 1,4-dioxane, the MDH HRL. No COCs for Building 102 shallow groundwater exceeded their respective cleanup levels in FY 2018 (Table 10-2).

Do additional remedial measures need to be addressed?

No. However, it should be noted that as part of Ramsey County's site redevelopment work, Ramsey County has relocated a section of Rice Creek to create more space for construction of a new I-35W / County Road H interchange. The relocation work placed Rice Creek much closer to the west side of the Building 102 plume. While the long-term impacts to groundwater flow are not yet known, given that Unit 1 groundwater discharges to Rice Creek, it is a possible that the new location could cause contaminated groundwater to begin flowing in a more westerly direction, and could potentially discharge into the creek in its revised location rather than continuing to discharge into the creek near 01U048. With this potential adverse outcome in mind, in FY 2016, Ramsey County installed two sets of nested monitoring wells adjacent to the revised creek location, on the east side of the creek near the point of potential groundwater discharge. Ramsey County intends to perform ongoing sampling at the new wells. The MPCA has indicated to Ramsey County that if Ramsey County's actions cause a shift in the Building 102 plume and resultant exceedance of an action level in a Ramsey County Rice Creek monitoring well, it will be Ramsey County's responsibility to address that situation.

Bay West, working on behalf of Ramsey County, provided the "Groundwater Monitoring Report – August 2018 Sampling Event for the Rice Creek Remeander, TCAAP Redevelopment" to Arcadis in September 2018. According to quarterly groundwater monitoring performed at Building 102 beginning in March 2017 after completion of the remeander through August 2018, there appears to be no impacts to groundwater quality. Vinyl chloride was detected in 01URC1D during the March 2017 event at a concentration of 0.058 µg/L and at a concentration of 0.086 µg/L during the August 2018 event, which are well below the MDH HRL of 0.2 µg/L. As of the August 2018 groundwater monitoring event, there was no apparent change in the Building 102 plume configuration or groundwater flow. Bay West will continue to monitor the groundwater quality during two additional semi-annual events and will provide a monitoring report with cumulative monitoring data following each event. For a more detailed summary of the Rice Creek Remeander groundwater monitoring, refer to Bay West, 2018.

It should also be noted that Ramsey County plans further development in this area that may result in loss of monitoring wells (subject to Army and regulator approval) due to installation of a storm water control basin. Ongoing efforts will be made to address any issues resulting from Ramsey County's development plans.

11 OPERABLE UNIT 2: AQUATIC SITES

The Tier II Ecological Risk Assessment Report (U.S. Army Center for Health Promotion and Preventative Medicine [USACHPPM] 2004) for aquatic sites, was approved by the MPCA and USEPA in December 2004. In June 2005, the Army submitted a draft feasibility study (FS) for aquatic sites to support the risk management decisions with respect to "No Further Action" or "Implement a Remedy" for each aquatic site. Following comments to the draft FS, it was agreed that additional sampling of Marsden Lake and Pond G would be conducted. This sampling was completed in 2008. Revised draft FS versions were submitted in January 2009 and April 2010. After review of the 2010 draft FS, the USEPA and MPCA requested that the Army prepare a work plan for collection of additional Round Lake sediment data (Round Lake is located off the southwest corner of OU2). Given the time required to collect the additional data, the Army, USEPA, and MPCA agreed to separate the FS into two documents: one for Round Lake and one for the OU2 aquatic sites, i.e., Rice Creek, Sunfish Lake, Marsden Lake North, Marsden Lake South, and Pond G. These sites are located as shown on Figure 11-1.

The USEPA and MPCA provided consistency for the Rice Creek, Sunfish Lake, Marsden Lake, and Pond G FS in January 2011. No Action was recommended for Rice Creek, Sunfish Lake, Marsden Lake North, and Marsden Lake South. A remedy was recommended for Pond G (surface water hardness adjustment) to attain compliance with the Minnesota surface water standard for lead (Class 2Bd chronic standard). OU2 ROD Amendment #4, which documents selection of the recommended alternative, was signed in January 2012.

The USEPA and MPCA provided consistency for the Pond G RD/RA Work Plan in March 2012, and the pond was treated in June 2012. The pond surface water was then monitored in 2012 and 2013, and results verified compliance with the surface water standard for lead. The completed Pond G remedial action work and surface water monitoring results were documented in the Remedial Action Completion and Close Out Report, Pond G (Wenck 2013b), which received regulatory consistency approval in FY 2014. The report recommended that the Pond G site be closed with no long-term maintenance, monitoring, or LUC requirements. The 2014 CERCLA five-year review also indicated final concurrence regarding the adequacy of the Pond G remedy, and the Pond G site has been closed. Since the completed remedy does not result in hazardous substances remaining on-site above levels that allow for unlimited use and unrestricted exposure, future CERCLA 5-year reviews are not required for Pond G and, as noted above, there are no monitoring or LUC requirements.

12 OPERABLE UNIT 2: DEEP GROUNDWATER

The selected remedy for the Deep Groundwater in the OU2 ROD consists of five remedial components that include continued use of the TGRS, with modifications to improve VOC contaminant removal from the source area. It also includes an annual review of new and emerging technologies potentially applicable to the Deep Groundwater. This report documents all performance and monitoring data collected from October 2017 through September 2018.

Historical Design and Evaluation of TGRS Remedial Action

Historical design has been previously discussed in various APRs to date. As a brief summary, an Interim Response Action Plan for TCAAP (USEPA 1987) was prepared providing specific criteria for the Boundary Groundwater Recovery System (BGRS) which started on October 19, 1987. Initially operated as six extraction wells on the southwest OU2 boundary, the BGRS was later expanded between 1987 and 1989 to include six additional extraction and five source control wells as part of the TGRS. The TGRS was designed to prevent TCE mass migrating from OU2 towards OU1 based on a 5 µg/L TCE plume contour width at the southwestern OU2 boundary. As the TCE plume has narrowed since the start of operation, select wells positioned outside the plume footprint, or not contributing substantive capture benefit, have been turned off. As of 2018, the TGRS operates with 11 wells including eight boundary extraction wells and three source control wells with treated effluent discharged to the Arsenal Sand and Gravel Pit where it recharges overburden sands (Upper and Lower Unit 3). The TGRS was designed to operate at a maximum theoretical capacity of 2,900 gallons per minute (gpm), which includes a significant safety margin above its current operational flow rate to accommodate potential fluctuations in system operation.

The 1989 Annual Monitoring Report was the first report covering the fully configured TGRS, which concluded that a continuous zone of capture, approximately 4,500 feet wide, was developed at the TCAAP property boundary. The zone of capture widened to approximately 8,300 feet upgradient of the boundary. This zone of capture was developed at average system pumping rates of 2,400 to 2,700 gpm.

Operation of the TGRS remedy has been effective in reducing COC concentrations at nearly all OU2 monitoring wells by over approximately one order of magnitude. Significant reductions in TCE concentrations were evident during the early 1990s; however, slower relative declines in TCE concentration have occurred over the last 10 to 20 years. A remedy review was conducted and approved by the regulatory agencies in June 2018. This report presents improvements for consideration toward overall mass removal and TGRS operational efficiency.

In FY 2003, the Army received agency approval on the TGRS Operating Strategy (OS) document. The OS was based, in part, on findings from the 1989 Annual Monitoring Report. The OS presented a Global Operation Strategy (GOS) for the entire TGRS extraction system and a Micro Operation Strategy (MOS) for selected well groups. Evaluations now consider and compare actual pumping rates to the GOS and MOS rates presented in the Final TGRS OS.

TGRS Modifications

For most of FY 2018, the TGRS operated with 11 extraction wells. However, in September 2018, the agencies approved shutdown of SC2. As a result of the TCAAP Operable Unit Remedy Review, up to

three additional extraction wells are proposed to be installed and operated during FY 2019. One of these wells will be located downgradient of Site G and serve as a replacement for SC2. For more detailed discussion on historical modifications refer to previous APRs.

12.1 Remedy Component #1: Hydraulic Containment and Contaminant Removal From the Source Area

Description: "Groundwater extraction to hydraulically contain the contaminated source area to the 5 μ g/L TCE concentration contour and optimize the removal of contaminants from the source area through pumping of select wells." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the TGRS is containing the contaminated source area to the 5 μ g/L TCE contour and the system is operated to maximize the contaminant removal from the source area.

Is the remedy component being implemented?

Yes. The TGRS operated in FY 2018 consistent with the requirements of the OU2 ROD. Table 12-1 presents the TGRS cleanup requirements per the OU2 ROD. During FY 2018, the TGRS average extraction rate was approximately 1,746 gpm, as shown in Table 12-2. This rate meets the GOS Total System Operational Minimum (1,745 gpm) where the Army and the agencies agree that OU2 ROD requirements are met with an adequate safety factor.

Two of the three individual well groupings were above their respective MOS minimums for FY 2018. The B1, B11, B13 well grouping was below the MOS minimum of 415 gpm due to an approved February 2013 B11 shut down and TGRS maintenance events. B11 will continue to be monitored to verify containment.

How is the system operated and what preventative maintenance measures were conducted during the year?

Summary of Operations

Previous APRs denote the Summary of Operations. As of 2018, the TGRS operates with 11 wells including eight southwestern boundary extraction wells (B1, B3, B4, B5, B6, B8, B9, and B13) and three source control wells downgradient of interior OU2 source areas (SC1, SC2, and SC5). The TGRS layout is presented on Figure 12-1.

On September 6, 2018 GHD (on behalf of the Army) submitted an email to USEPA and MPCA requesting to discontinue pumping at SC2 because of extensive maintenance due to fouling (the well was down since July 2018) with very little benefit in the way of hydraulic containment or mass removal (typical operation was near 30 gpm). USEPA and MPCA agreed to the request in an email dated September 11, 2018.

The TGRS was designed and constructed with three options for treated water discharge: recharge at the Arsenal Sand and Gravel Pit, discharge to Rice Creek, and discharge to the elevated water tank. Water stored in the elevated tank was "softened" and then "polished" with GAC prior to distribution at the Facility. Since the Army discontinued all non-environmental services at the Facility in September 2007,

the elevated water tank and the water softening and polishing equipment are no longer used. As such, the Arsenal Sand and Gravel Pit receives all of the extracted and treated water from the TGRS.

System Operation Specifications

In general, the influent and effluent water flow rates at the treatment plant are designed to be equal, thereby providing continuous operation of all processes and equipment. The following is a summary of the original system design parameters:

- The groundwater extraction system, including the treatment center and 17 TGRS extraction wells, was originally designed to provide a theoretical hydraulic capacity of 2,900 gpm and a sustained daily average capacity of 2,730 gpm.
- The influent to the treatment plant is divided between Towers 1 and 2, each receiving up to a maximum of 1,450 gpm.
- Wet Well Pumps 1 and 2 (WWP#1 and WWP#2 located in Wet Wells 1 and 2) transfer water to Towers 4 and 3, respectively. Each pump and tower handles up to a maximum of 1,450 gpm.
- Wet Well Pumps 3 and 4 (WWP#3 and WWP#4 located in Wet Well 3) discharge treated water to an end use at a combined rate of up to a maximum of 2,900 gpm
- Air blowers provide air to the towers. Each blower for Towers 1 and 2 is designed to provide 6,000 7,000 standard cubic feet per minute (scfm). The blowers for Towers 3 and 4 are designed to provide 9,000 14,000 scfm.

The TGRS was modified to allow for 2 air stripping tower treatment instead of the original design of 4 air stripping tower treatment, which resulted in a reduction of energy use while still meeting the 5 μ g/L TCE effluent discharge limit. Wet Well Pumps 1 and 2 (40 horsepower each) and blowers 1 and 2 (5 horsepower each) were shut down and the valves to Towers 1 and 2 were closed. Since March 2010, groundwater has been effectively treated by air stripping Towers 3 and 4 while Towers 1 and 2 remain in standby.

Water level sensors within the wet wells communicate with the PLC according to changing water levels. A complete and balanced operation should provide continuing water levels above the low-level sensors and below the high-level sensors. However, given the probability of unbalanced flows for any number of reasons (e.g., changing hydraulic heads, maintenance, repairs, temporary malfunctions), the PLC has provisions within its program to cycle-off the extraction well(s) or wet well pumps according to high water levels occurring in the wet wells; and in turn, cycle-off the wet well pumps according to low levels occurring within these wet wells.

The system operates such that the wet well pumps cycle rather than the extraction well pumps. The rationale behind this is that there are a relatively small number of motors, starters and electrically controlled valves associated with the wet wells when compared with the extraction well field. This also provides for more continuous and complete hydraulic capture within the aquifer units. However, the extraction well field will cycle if necessary, starting with the least contaminated extraction well, B7 (if operating), and followed by the other extraction wells in a predetermined sequence. In summary, the priority of operation is as follows:

- Maintain constant operation of all extraction wells and air stripping towers above the operating minimum;
- Maintain the desired flow rates at individual wells;
- If operating in four tower mode, maintain WWP#1 and WWP#2 pumping rates equal to or slightly above the combined pumping rate of the extraction well field; and
- Maintain treatment center WWP#3 and WWP#4 pumping rate equal to or slightly above the WWP#1 and #2 pumping rate (if operating in four tower mode) or slightly above the combined pumping rate of the extraction well field (if operating in two tower mode).

FY 2018 Maintenance and Inspection Activity

During FY 2018, the following inspection and maintenance activities occurred:

<u>Preventive Maintenance (PM)</u>: The extensive PM program allowed the operations staff to identify and repair or replace equipment to avoid a downtime failure. The program consists of monthly, quarterly and annual maintenance tasks. When required, further repair work was scheduled rather than waiting for the failure to occur. A broad range of system-specific information was collected during this year's PM. This information is used to direct future repair work.

<u>Electrical Inspection and Temperature Survey</u>: A system-wide electrical inspection and infrared temperature survey was performed to identify loose connections and overheating components. Component overheating often precedes equipment failure. Electrical components that were identified as failing were replaced.

<u>Verification of Flow Meters</u>: As part of the routine PM, flow meters in the pumphouses were compared to a factory-calibrated flow meter. Flow volume measurements before and after conducting maintenance on the meters were compared to verify the consistency of measurements. Meters found to be out of calibration were replaced or recalibrated.

<u>Daily Tracking of Flow Rates</u>: Pumphouse and treatment center meter readings were recorded in the course of the daily inspections. Daily meter readings were tabulated and the flow rates were calculated and reviewed by the operations staff. Early detection of changes in flow rate was critical in early identification of failing equipment. By early detection of flow rate changes, equipment repair was typically scheduled before a failure occurred.

Did the system operate at a rate sufficient for complete capture?

Respective of current OU2 ROD requirements, yes. At 1,746 gpm, the total extraction well pumping rate was above the GOS Total System Operational Minimum (1,745 gpm) where the Army and the agencies agree that OU2 ROD requirements are met with an adequate safety factor. The TGRS OS pumping scheme was developed, in part, on the findings in the 1989 Annual Monitoring Report and updated to hydraulically capture the 5 μ g/L TCE contour for the TCE source areas based on 2001 chemical data. A factor of safety was added to the base theoretical capture rate (1,200 gpm) to provide a buffer and/or flexibility for system maintenance. Based on this approach, a minimum combined TGRS extraction rate of 1,745 gpm was agreed to by the Army and the agencies that OU2 ROD requirements are met with an adequate safety factor.

Figure 12-2 plots the TGRS daily average flow rate from October 1, 2017 through September 30, 2018 and shows operation above the Operational Minimum (OM) for the majority of the time (253 days or 70 percent of the time) in FY 2018. Significant loss of extraction water volume occurred due to power failures and communications issues between wells and the Building 116 PLC. This issue has since been remedied. Appendix G.2 provides additional information on the various downtimes throughout FY 2018.

The monthly and annual volume of water pumped is presented in Table 12-2 and 12-3. Table 12-2 presents the pumphouse metered monthly flow volumes of each extraction well. The individual pumphouse flow meters are used to determine the amount of groundwater extracted from the various well groups, individual extraction wells, and the total amount of groundwater extracted during the fiscal year. Table 12-3 presents the combined pumphouse-metered flow volume (extraction wells) and the flow volumes metered at various stages in the treatment center along with historical data. These flow meters are used to evaluate the flow of water through the treatment process to ensure proper system operation.

As shown on Table 12-3, the TGRS successfully captured and treated approximately 917,437,500 gallons of contaminated water from October 2017 through September 2018 based on the sum of the individual pumphouse flow meters. This volume converts to an average flow rate of 1,746 gpm, which meets the GOS minimum of 1,745 gpm.

Monthly Flow Reports

Each month a Monthly Flow Report is prepared. The report includes the month's meter totalizer readings, calculated flow volumes and operational notes. Flow volumes are presented on a daily basis and are totaled to provide a monthly flow volume. A compilation of FY 2018 operational notes is presented in Appendix G.2. During FY 2018, the sum of the individual pumphouse flow meters was used to measure total flow volumes in monthly reports for comparison with Operating Strategy limits. Daily variation in readings at individual wells is primarily due to differences in the time of day when meter readings were taken.

How much down time occurred during the year?

The down time for each extraction well, over the last five years, is presented in Table 12-4. A summary of average down time for the pumphouses and the treatment center by the category of failure is presented in Table 12-5. A description of each down time event, organized chronologically, is presented in Appendix G.2. The same descriptions organized by affected pumphouse, treatment center, and forcemain is presented in Appendix G.3.

Treatment center and extraction well down times resulted primarily from failure and subsequent repair of components in the pumphouses, treatment center, and electrical service. The downtime in FY 2018 increased from FY 2017 (from 6.7 days in FY 2017 to 14.2 days in FY 2018). As explained above, the increase in downtime was primarily due to communication issues between the PLC and the pumphouses and electrical power outages.

Description of Down Time Categories

Pumphouse component failures accounted for an average of 1.9 days down time per pumphouse. The major pumphouse repairs causing down time were:

• Communication issues causing pumphouses to shut down when signal is lost,

- Electrical issues (including power outages), and
- Redevelopment of B5 and installation of larger capacity pump and motor, per the TCAAP Operable Unit Remedy Review.

Treatment center component failures and repairs that caused pumphouse down time consisted of electric check valve maintenance, malfunctions and repairs, and electrical control equipment failures and troubleshooting communication issues and subsequent repairs.

Treatment center component failures, repairs, and adjustments accounted for an average of 0.5 days down time per pumphouse. The major treatment center repair causing substantial down time was a failed pilot and solenoid valve that had to be removed and rebuilt.

Electrical service system failures accounted for an average of 4.9 days down time per pumphouse. Electrical storm damage and power grid failures were the primary causes of down time.

Preventative maintenance procedures accounted for less than 0.5 days of down time in FY 2018. For the most part, preventative maintenance was able to be performed without interruptions to the treatment system. Preventative maintenance procedures are described in the project Operation and Maintenance Manual. System modifications did not account for any days of down time in FY 2017.

System modifications accounted for an average of 0.4 day of down time in FY 2018. System modifications included upgrading the pump and motor at extraction well B5.

Were there any major operational changes during the year? No.

Did the system achieve hydraulic capture?

Respective of current OU2 ROD requirements hydraulic influence is noted via extraction above the GOS Operational Minimum under Army and agency agreement. In addition, a remedy review has been conducted and approved by the regulatory agencies presenting improvements for consideration toward overall mass removal and TGRS operational efficiency. The OU remedy review received agency approval in June 2018. Another sign, with respect to system operation, is the generally stable or decreasing TCE concentrations evident at many wells across the TGRS boundary since FY 2001. Moreover, comparison of the OU1 TCE plume footprint over the past 20 years as summarized in the last four USEPA five-year reviews and further discussed below indicates a stable bedrock TCE plume footprint. Groundwater elevation measurements collected in summer 2018 are presented in Appendix D.

How much VOC mass was removed by the system and how is it changing with time?

As discussed above, the TGRS extracted and treated approximately 917,437,500 gallons of water from October 2017 through September 2018. Based on the monthly influent and effluent VOC concentrations and the monthly flow totals as measured by the extraction well flow meters, the TGRS removed a total of 1,911 pounds of VOCs from October 2017 through September 2018. The VOC mass removal in FY 2017 was 1,988 pounds. The decrease in the VOC mass removal occurred because of the increased amount of downtime and slightly lower average influent VOC concentrations. When comparing the FY 2018 to FY 2017 and past years and taking into account operational downtime, the trend still depicts an overall reduction in mass removal.

Average VOC influent concentrations decreased slightly from 256 μ g/L in FY 2017 to 250.7 μ g/L in FY 2018. Table 12-6 summarizes the individual VOC mass contribution of each extraction well and the entire

system. Overall, the TGRS has removed over 109 tons (218,660 pounds) of VOCs from the aquifers since 1987 and 21 tons of VOCs since the end of FY 2001 (the TGRS OS was based on data through 2001). If the annual VOC mass removal from the TGRS is less than 1,709 pounds (50 percent of the FY 2001 mass removal) then the Army and agencies have agreed that review of the OS operating minimum rates should be conducted and potentially reduced. At 1,911 pounds in FY 2018, the VOC mass removal from the TGRS is at 56 percent of the FY 2001 mass removal.

The total mass removed is based on the monthly TGRS influent and effluent sampling and flow through the treatment system. The monthly sampling of the treatment system provides the best estimate of overall mass removal, compared to the individual extraction well sampling, due to the larger number of samples and consistency in the month-to-month analytical results. The percent contributions for each well are based on the average flows from each well and the semi-annual VOC results from each well.

VOC samples were collected semi-annually from the TGRS operating extraction wells. Wells B2, B7, B10, B11, B12, SC3, and SC4 are shut down, but were temporarily operated for June 2018 sampling.

Table 12-7 presents a summary of the sampling results for the extraction wells. Variations in detection limits from round to round are the result of varying sample dilution performed by the laboratory where dilutions are required due to the high concentrations of some analytes. The locations of the extraction wells are presented on Figure 12-1.

Appendix H.1 presents TCE versus time graphs for each extraction well. As shown, TCE concentrations have declined in each well, and now at many wells TCE concentrations appear to be stable or still declining. Since FY 2001, the following extraction wells have shown the most improvement (greater than 50 percent reduction) in TCE concentrations:

- B11 (4.8 μg/L in FY 2001 to non-detect in FY 2018 100% reduction),
- SC3 (5.5 μg/L in FY 2001 to 0.3JP μg/L in FY 2018 94% reduction),
- B10 (5.1 μg/L in FY 2001 to non-detect μg/L in FY 2018 100% reduction),
- B6 (230 μg/L in FY 2001 to 25 μg/L in FY 2018 89% reduction),
- B4 (500 μg/L in FY 2001 to 65 μg/L in FY 2018 87% reduction),
- B5 (410 μg/L in FY 2001 to 63 μg/L in FY 2018 85% reduction),
- B1 (180 μg/L in FY 2001 to 46 μg/L in FY 2018 74% reduction),
- SC2 (100 μg/L in FY 2001 to 28 μg/L in FY 2018 72% reduction),
- B3 (8.7 μg/L in FY 2001 to 3.8 μg/L in FY 2018 56% reduction),
- B9 (110 μg/L in FY 2001 to 29 μg/L in FY 2018 74% reduction),
- SC4 (6.9 μg/L in FY 2001 to 2.2 μg/L in FY 2018 68% reduction), and
- B8 (21 μg/L in FY 2001 to 7.9 μg/L in FY 2018 62% reduction).

In fact, only 3 wells (B2, SC5, and SC1) have shown less than a 50 percent reduction in TCE concentrations since FY 2001. These trends reflect the overall decline in OU2 deep groundwater

contaminant concentrations. In addition, as discussed below, there has been a reduction in overall TGRS influent concentrations over the previous several years

As Table 12-6 illustrates, eight wells, B1, B4, B5, B6, B9, B13, SC1 and SC5, that are located in the centers of the plume, achieve the largest rates of VOC removal. These eight wells together accounted for over 99 percent of the VOC mass removed.

The source control wells, SC1 through SC5, together accounted for over 83 percent of the VOC mass removed while accounting for only 7.3 percent of the water pumped by the system. SC5, in particular, removed 73.3 percent of the total VOC mass at a rate of only approximately 107 gpm (6.1 percent of the total water pumped by the system). This illustrates the efficiency of extracting groundwater from near the source areas, which is further discussed in the current remedy review.

What do the long-term trends in the monitoring wells show?

A majority of wells on and off TCAAP exhibit decreasing trends in TCE concentration, indicating an overall improvement in water quality both upgradient and downgradient of the TGRS. Due to the complexity of the flow system, changes in flow direction over time, and the variation in chemical transport properties across the study area, the trends may not reflect a uniform or easily predictable pattern.

Several wells were identified in previous APRs, or when reviewing the FY 2018 database that have inconsistent or upward trends in TCE concentrations that warrant further observation and discussion:

Well	Trend Observation
03L806	Trend identified in FY 2001 APR. TCE concentrations have steadily decreased from 620 μ g/L in 2013 to 38 μ g/L in 2018. Maintain annual sampling frequency to determine if this downward trend continues.
04U806	Trend identified in FY 2001 APR. Dropped from 1,000's of μ g/L in early to mid- 1990s. TCE steadily decreased from 470 μ g/L in 2001 to 96 μ g/L in 2007. In 2008, TCE spiked at 380 μ g/L, but concentrations decreased the next year and have varied between 52 μ g/L and 220 μ g/L since 2009 with a notable steadily decreasing trend (49 μ g/L in 2018). Maintain annual sampling frequency.
03U094	Trend identified during FY 2004 data review. TCE increased from 170 μ g/L in 2003 to 470 μ g/L in 2005. From 2005 to 2013, TCE concentrations decreased to 80 μ g/L in 2013, a historical low concentration. Increased to 610 μ g/L in 2015, the highest concentration since 1996.Since then decreased to 360 μ g/L in 2016 and 200 μ g/L in 2018. Maintain biennial sampling frequency (next event 2020).
03M806	Trend identified during FY 2003 data review. TCE concentrations dropped from approximately 900 μ g/L in 1987, to less than 100 μ g/L from 1993 through 1996. In 2003, TCE increased to 1,300 μ g/L, a historical high concentration. TCE concentrations decreased from 680 μ g/L in 2008 to 250 μ g/L in 2015 but increased to 410 μ g/L in 2017 and then decreased to 330 μ g/L in 2018. Maintain annual sampling frequency.

Well	Trend Observation
03U711	Trend identified in FY 2001 APR. TCE concentrations decreased from approximately 1,000 μ g/L in 1994 to 75 μ g/L in 1999 but rebounded to 250 μ g/L by 2004. Since 2004, concentrations have steadily decreased to 27 μ g/L in 2016 and 31 μ g/L in 2018. Maintain biennial sampling frequency (next event 2020).
03L809	Trend identified in FY 2001 APR. TCE concentrations decreased from over 3,000 μ g/L to 67 μ g/L through 1998 but rebounded to 520 μ g/L by 2001. Since 2001, concentrations have decreased to 120 μ g/L in 2018. Maintain biennial sampling frequency (next event 2020).
04U843	Trend identified in FY 2001 APR. TCE concentrations were below 15 μ g/L from late 1980s through 1997, and then increased to between 22 μ g/L and 38 μ g/L from 1998 through 2001. In 2003, TCE dropped below 1 μ g/L, and has since been steadily increasing as it was 220 μ g/L in 2018. This well is nearly 1 mile from the TGRS and is part of the OU1 sampling program; also see Section 3. Maintain biennial sampling frequency (next event 2020).
04U841	Trend identified in FY 2001 APR. TCE concentrations were below 10 μ g/L through 1995, and then increased to 25 μ g/L in 2001. In 2003, TCE decreased to 5 μ g/L, but rebounded to 19 μ g/L in 2005. TCE appears stabilized around 20 μ g/L, with concentrations ranging between 10 and 24 μ g/L since 2005 (10 μ g/L in 2018). Well is nearly 0.5 mile from TGRS and is part of the OU1 sampling program; also see Section 3. Maintain biennial sampling frequency (next event 2020).
03U822	Trend identified during FY 2003 data review. TCE concentrations were below $25 \mu g/L$ through 1998, and then peaked at $375 \mu g/L$ in 1999. Concentrations have ranged between 42 and 160 $\mu g/L$ from 2005 to 2015 (42 $\mu g/L$ in 2018). Well is approximately 1 mile from TGRS and is part of the OU1 sampling program; also see Section 3. Maintain biennial sampling frequency (next event 2020).
03L822	Trend identified in FY 2001 APR. TCE concentration increased from less than 5 μ g/L during early 1990s to over 600 μ g/L from 1999 through 2003. Concentrations steadily decreased from 620 μ g/L in 2003 to 180 μ g/L in 2011 but rebounded slightly in 2013 to 220 μ g/L. Concentration decreased slightly in 2016 to 190 μ g/L and again in 2018 to 130 μ g/L. Well is approximately 1 mile from TGRS and is part of the OU1 sampling program; also see Section 3. Well historically showed 1,1,1-trichloroethane as major contaminant. Maintain biennial sampling frequency (next event 2020).

12.2 Remedy Component #2: Groundwater Treatment

Description: "Groundwater treatment using air stripping." (OU2 ROD, page 3)

Performance Standard (how do you know when you're done):

When the air stripping treatment facility is treating water and meeting the cleanup requirements in Table 1 of the OU2 ROD.

Is the remedy component being implemented?

Yes. The air stripping treatment facility has been operating since 1986.

Did the treatment system meet the treatment requirements in the OU2 ROD?

Yes. Influent and effluent water were sampled on a monthly basis during FY 2018. The influent/effluent database for FY 2018 is contained in Appendix G.2. Figure 12-6 presents a graph of influent TCE versus time. This graph is cumulative and includes data from before 1989, when the system consisted of only six extraction wells. The average FY 2018 influent TCE concentration was 202.5 μ g/L, which is a 3 percent decrease from 209 μ g/L in FY 2017. FY 2018 represents the 18th year since the TGRS was reconfigured to pump more in the centers of the VOC plumes and pump less on the edges of the plumes where VOC concentrations are much lower. The influent TCE concentrations had been steadily decreasing for several years, likely due to the overall decrease in plume concentration.

Figure 12-6 also presents a graph of the effluent TCE concentration versus time. As indicated, the effluent was below 5 μ g/L TCE for all sampling events in FY 2018. A review of the FY 2018 database indicates that the effluent remained below the treatment requirements for all other VOC compounds specified in the OU2 ROD. Comparison of influent and effluent concentrations for all specified VOC compounds indicates an average removal efficiency of 99.3 percent. As expected, effluent concentrations of TCE increased slightly after the treatment was changed to two tower operation (two tower operation was tested in February 2011 and went into full operation in March 2011). The maximum effluent TCE concentration in FY 2018 was 2.4 μ g/L and the average was 1.8 μ g/L, which are both well below the discharge limit.

What was the mass of VOCs emitted into the air?

The air stripping towers remove VOCs with an efficiency of approximately 99.3 percent. The air emissions are equal to the VOC mass removal rates presented in Table 12-6. Air emissions averaged 5.2 pounds per day based on the VOC mass removal rates. The total VOC emissions from October 2017 through September 2018 were 1,911 pounds. In FY 2019, the Army will be evaluating and potentially implementing measure to reduce the amount of TCE emitted into the air from the TGRS.

12.3 Remedy Component #3: Treated Water Discharge

Description: "Discharge of treated water to the on-site gravel pit." (OU2 ROD, page 3)

Performance Standard:

When the gravel pit is accommodating the discharge from the treatment system and allowing it to recharge to the aquifer.

Is the remedy component being implemented?

Yes. Based on visual observation during FY 2018, there were no noticeable changes in Gravel Pit performance. The Gravel Pit is accommodating the TGRS discharge as designed.

12.4 Remedy Component #4: Institutional Controls

Description: "Institutional controls to restrict access to contaminated aquifers and prevent exposure to contaminated groundwater." (OU2 ROD, page 4)

Performance Standard (how do you know when you're done):

When a special well construction area and alternate water supply have been established and private wells in impacted areas have been sealed.

Is the remedy component being implemented?

Yes. There are no private users of groundwater on the property and no potable water supply. There are ICs in place for future groundwater use associated with upcoming property redevelopment.

Are any changes or additional actions required for this remedy component?

Yes. On April 20, 2016, the MDH issued a memorandum updating the Special Well and Boring Construction Area (SWBCA) that noted the rezoning of the TCAAP facility for future development and updated the SWBCA boundary to include the entirety of TCAAP. As such, all wells and borings constructed or modified within the SWBCA must first be approved by the MDH.

12.5 Remedy Component #5: Review of New Technologies

Description: "Reviews of new and emerging technologies that have the potential to cost-effectively accelerate the timeframe for aquifer restoration. Reviews shall be performed by the Army and reported annually in accordance with the consistency provisions of the TCAAP FFA." (OU2 ROD, page 4).

The intent is to consider new technologies of merit, which is not on any set schedule. To have merit, a new technology must have promise in reducing cost and time for cleanup. There may be years where no technologies are considered. It is envisioned that at any time, any interested party (Army, USEPA, and MPCA) can suggest new technologies for consideration. If a technology is agreed to have merit by the Army, USEPA, and MPCA, then the Army will evaluate the technology. The level of effort for evaluations can range from simple literature searches to extensive treatability studies. On an annual basis, the Army will report on:

- Whether or not any new technologies were identified and considered to have merit that year,
- The progress or results of any evaluations during that year, and
- Any planned evaluations for the following year.

Performance Standard (how do you know when you're done):

When the Army reports on the status of any reviews of emerging technologies in the annual monitoring report.

Is the remedy component being implemented?

Yes. Since the FY 1997 Annual Performance Report, the Army reports annually on the status of any reviews of emerging technologies.

- In September 2002, the MPCA and USEPA announced they would be conducting a natural attenuation microcosm study using carbon dating. In October 2002, Army drilled a boring at Site G to collect soil for the study. The study results were published in 2004.
- The MPCA identified a study involving the addition of vegetable oil to groundwater that is being monitored at the Navy site in Fridley, Minnesota, as a potential technology of interest.

Were any new technologies identified and considered to have merit during FY 2018?

Yes. The TCAAP Source Identification and TCAAP Operable Unit Remedy Review has been approved by the agencies and is intended to be implemented during FY 2019. In addition, the Army will be evaluating and potentially implementing measures to reduce the amount of TCE emitted into the air from the TGRS.

What is the status and/or findings of any previously initiated reviews of emerging technologies?

MPCA continued its research into natural attenuation processes at TCAAP. The MPCA and USEPA published the results of the microcosm study for deep groundwater sediments in 2004 showing that abiotic degradation of cis-DCE is an important factor contributing to the natural attenuation of this compound at the site. (*Non-biological Removal of cis-dichloroethylene and 1,1-dichloroethylene in aquifer sediment containing magnetite*. Environmental Science and Technology, 38: 1746-1752.)

Are any new reviews planned at this time for the coming year?

Yes. The Source Area Work Plan and Vapor Phase Carbon System Installation Design and Work Plan are under review.

12.6 Remedy Component #6: Groundwater Monitoring

Description: "Groundwater monitoring to track remedy performance." (OU2 ROD, page 4).

Performance Standard (how do you know when you're done):

When a regulator approved monitoring plan is in place and monitoring is conducted according to the plan.

Is the remedy component being implemented?

Yes. Monitoring in FY 2018 was consistent with the OU2 ROD. Water level measurements and water quality samples were collected as stated in Appendix A.1. Appendix A summarizes the FY 2018 monitoring plan and any deviations are explained in Appendix C.2. Monitoring was as follows:

Groundwater

TGRS groundwater level measurements were collected during December 2017 and June 2018 according to the monitoring plan. Appendix D contains the comprehensive groundwater quality and water level database for the TGRS monitoring wells. Water quality samples were collected from TGRS wells according to the monitoring plan. Groundwater samples were collected at wells stated in Appendix A.1. All wells were sampled for VOC (8260B) analysis and 1,4-dioxane (Method 522), except for those at Site A where 1,4-dioxane was determined not to be a COC. FY 2018 was a "large round" year in the biennial sample program, samples were collected from a select list of wells. Table 12-8 presents the groundwater quality data for FY 2018. Figures 12-7 through 12-9 present plan views of the TCE and 1,4-dioxane plumes and Figures 12-10 and 12-11 present a cross sectional view of the plume along the property boundary. Results from the FY 2018 groundwater sampling showed that most of the wells sampled continued to have declining or stable TCE concentrations. Notable steadily decreasing trends are

observed at 04U806 (decrease from 725 µg/L in 2000 to 49 µg/L in 2018), 03U708 (steady decrease from 120 µg/L in 2005 to 20 µg/L in 2018), 03L806 (620 µg/L in 2013 to 38 µg/L in 2018).

Although the general trend at most wells since 1999 appears to be declining or stable, the monitoring wells listed below had notable increases in TCE concentration in FY 2018:

- 03L014 (86 μg/L in 2017 to 150 μg/L in 2018),
- 03U018 (28 μg/L in 2017 to 49 μg/L in 2018),
- 03U030 (4.6 μg/L in 2017 to 61 μg/L in 2018), and
- 03U077 (10 μg/L in 2017 to 27 μg/L in 2018).

As shown on Figure 12-3, all these wells are well within the capture zone of the TGRS extraction system so the significance of these increases (if they are indeed real increases, and not laboratory or field anomalies) are minimal. Please note that the trends over the last 10 years in these wells have shown a downward trend in TCE, with the exception of FY2018. All of these wells will continue to be monitored and no further sampling beyond the scheduled events is necessary at this time.

Estimated TCE Plume Width

The 2003 TGRS OS stated that the actual measured width of the 5 μ g/L TCE plume at the source area based on FY 2001 analytical data was 3,600 feet (this value was then rounded up to 4,000 feet to determine an operating minimum flow rate noted in Section 12-1). Since that time, 21 tons of VOCs have been removed from groundwater. TCE concentrations are decreasing across Site, especially at the following wells which have been below 5 μ g/L since 2001: B10, SC4, 03L021, 03L833, 03U701, 04J702, 04U701, 04U702, and 04U833. Monitoring well 03U672, which was located outside the southern end of the 5 μ g/L TCE plume, decreased from 3.1 μ g/L in 2001 to not detectable (less than 1 μ g/L) from 2003 until it was abandoned in 2014. Well 03U677 replaced 03U672 in September 2014 and has never contained detectable concentrations of VOCs (including TCE). In addition, B11, which is no longer operating, reported a June 2018 TCE concentration of not detect.

As a result, the TCE plume width is narrowing. Figure 12-12 shows FY 2018 TCE data with the 5 μ g/L TCE contours for FY 2001 and FY 2018. The overall FY 2018 sample results are similar, or lower compared to the FY 2016 sample results.

Based on these contours, the estimated width of the source area TCE plume has decreased approximately 17 percent from 3,600 feet to 3,000 feet or approximately 83 percent of the FY 2001 width. According to the TGRS OS, overall TGRS operating goals will be reviewed if the source area plume width shrinks to 75 percent of the FY 2001 width, or 2,700 feet. At the boundary, the TCE plume narrowing is more pronounced, having decreased approximately 24 percent from 4,600 feet to 3,500 feet, which represents approximately 76 percent decrease from the FY 2001 width.

As stated previously, the Army intends to implement the TCAAP Source Identification and TCAAP Operable Unit Remedy Review during FY 2019 which is intended to maximize contaminant mass removal.

Treatment System

The TGRS treatment system influent and effluent was sampled monthly during FY 201 in accordance with the FY 2017 – FY 2021 monitoring plan. Groundwater samples from the extraction wells were collected in December 2017 and June 2018 in accordance with the FY 2017 – FY 2021 monitoring plan.

Is there additional monitoring proposed prior to the next report?

No additional monitoring for FY 2018 is proposed beyond that presented in the Monitoring Plan (Appendix A) of the FY 2018 APR. Table 12-9 and Appendix A of this report provide the FY 2018 – FY 2022 monitoring plan. If new extraction wells are installed during FY 2019 then they will be monitored consistent with an approve work plan.

12.7 Overall Remedy for Deep Groundwater

Did the TGRS meet the requirements of the OU2 ROD? Yes.

- Hydraulic influence in Units 3 and 4 extends upgradient within OU2 beyond the 5 µg/L contour, meeting VOC criterion in the OU2 ROD.
- The total average extraction well water pumped exceeded Total System Operational Minimum (1,745 gpm). The FY 2018 annual average extraction rate was 1,746 gpm.
- The TGRS extracted and treated 917,437,500 gallons of water and removed 1,911 pounds of VOCs from October 2017 to September 2018. Average VOC influent concentrations decreased by 3.9% from FY 2017.
- Groundwater analytical data of the source area show a general decrease in TCE concentration. This
 concentration decrease demonstrates that the TGRS is effectively removing VOC mass from the
 aquifer.
- Effluent VOC concentrations were below contaminant-specific requirements for all sampling events.

Do any additional measures need to be addressed?

As stated previously, the Army intends to implement the TCAAP Source Identification and TCAAP Operable Unit Remedy Review.

12.8 Other Related Activity in FY 2018

In 2018, monitoring wells proposed for sampling in the FY 2018 Monitoring Plan were sampled for 1,4dioxane. Table 12-10 presents the results of the 1,4-dioxane sampling for the TGRS influent, effluent, and extraction wells. No Federal MCL has been established for 1,4-dioxane; however, the MDH has established a HRL value of 1.0 μ g/L. All locations sampled except extraction wells (B5, B11, and SC5) had 1,4-dioxane concentrations exceeding the HRL. The TGRS influent and effluent were sampled in June 2017 where 1,4-dioxane concentrations were virtually identical in influent and effluent samples, indicating no concentration reduction from the treatment system. The monitoring well sampling results are presented on Table 12-11. A majority of the monitoring wells sampled (55 of 76) had 1,4-dioxane concentrations exceeding the HRL, with the highest concentrations found in the samples at 03U094 (157 μ g/L) and 03L014 (107 μ g/L). Figure 12-13 shows the 1,4-dioxane concentrations in plan view for the

FISCAL YEAR 2018 ANNUAL PERFORMANCE REPORT

west portion of OU2. Figures 12-14 and 12-15 present cross sectional views of the plume along the property boundary.

13 OPERABLE UNIT 3: DEEP GROUNDWATER

A 1992 OU3 ROD was developed, amended and finalized in August 2006 that significantly changed the OU3 remedy. The basis for the OU3 ROD Amendment was the "Groundwater Statistical Evaluation, OU3" technical memorandum, which received consistency on May 2, 2005. This document presented a statistical evaluation showing that the South Plume has been receding since at least 1996, including the period after the Plume Groundwater Recovery System (PGRS) was shut off in 2001. The South Plume had receded well upstream of the PGRS, which was basically pumping clean water. The ROD Amendment removed the need for a pump and treat remedy, eliminating the PGRS extraction well and treatment train. Figure 13-1 presents an OU3 site plan.

The PGRS was an off-post groundwater extraction and treatment system and municipal potable water supply. The PGRS consisted of NBM #13 and a GAC treatment plant. New Brighton used the water for municipal supply. The PGRS was designed to contain the South Plume of VOC contamination emanating from the former TCAAP property and to prevent further downgradient migration. Recovered groundwater was treated and used by the City of New Brighton to fulfill its municipal water supply demand.

The PGRS began operating on May 3, 1994. In 1997, the PGRS influent dropped below the ROD required limits for all VOCs. In December 1999, under an agreement with the Agencies, the PGRS pumping rate was reduced from a nominal rate of 1,000 gpm to 400 gpm to help determine if the VOC reductions in concentration were the result of actual plume decreases or the result of dilution from over pumping. In conjunction with the flow rate decrease, a quarterly monitoring program was undertaken to monitor for potential "rebound" in VOC concentrations. By the end of FY 2000, no rebound was observed and a review of the historical database for all of OU3 and the associated source area in OU2 revealed that the entire South Plume had dramatically decreased in size and concentration since the early 1990s. The VOC concentration decreases were such that the leading edge of the South Plume, at the PGRS, dropped below the ROD requirements.

The results of this evaluation were presented to the Agencies on September 6, 2000, and a report titled "Plume History Evaluation, Operable Unit 3", CRA, was submitted to the Agencies on October 10, 2000. The report documents the history of plume size and concentration reductions throughout OU3. Based on the dramatic reductions in plume size and concentration, the report recommended shutting down the PGRS, which the Agencies subsequently accepted. The City of New Brighton stopped significant pumping in August 2001 and the PGRS was maintained in standby status. During the period May through September 2003, the PGRS was operated solely to satisfy peak water supply demands and then was placed back into standby status, remaining throughout FY 2004, FY 2005, and FY 2006. The City conducted an evaluation of its municipal system to, in part, determine the future use of the PGRS extraction well and treatment system. The City decided the PGRS treatment system and well NBM #13 were not part of the City's long-term water supply plan. During FY 2007, the PGRS treatment system was dismantled and NBM #13 was abandoned.

13.1 Remedy Component #1: Monitored Natural Attenuation

Description: "Monitored natural attenuation." (OU3 ROD Amendment, page 17).

Performance Standard (how do you know when you're done):

When a monitoring program is established and monitoring is in compliance with the regulator approved Annual Monitoring Plan.

Is the remedy component being implemented?

Yes. Appendix A summarizes the FY 2018 monitoring plan and any deviations are explained in Appendix C.2. Details of the groundwater monitoring program are discussed in Section 13.2.

13.2 Remedy Component #2: Groundwater Monitoring

Description: "Monitoring of the groundwater for VOCs to verify the effectiveness of the selected remedy and the natural attenuation of the South Plume." (OU3 ROD Amendment, page 17).

Performance Standard (how do you know when you're done):

When a monitoring program is established and monitoring is in compliance with the regulator approved Annual Monitoring Plan.

Is the remedy component being implemented?

Yes. Appendix A summarizes the FY 2018 monitoring plan and any deviations are explained in Appendix C.2.

Groundwater samples were collected from 18 OU3 wells in FY 2018 as part of OU1, OU2, and OU3 annual sampling. Samples were collected as specified in the monitoring plan and analyzed for VOCs and 1,4-dioxane at locations shown on Figure 13-1. The specific purpose of monitoring each well is provided in Appendix A. Groundwater elevations were also measured during the monitoring event and are presented in Appendix D.1.

Table 13-1 presents a summary of the analytical results for the 18 monitoring wells that were sampled in FY 2018. The wells sampled contained TCE concentrations similar to those reported for the previous sampling events. Downgradient sentry well 04U863 TCE concentration remained less than 1.0 μ g/L or not detectable (less than 1.0 μ g/L) for the sixth consecutive year, after rising above 1.0 μ g/L for the first time since December 1999 in 2012 (1.2 μ g/L).

What were the results of the Statistical Analyses?

The Mann-Kendall statistical analysis has historically been completed for ten edge-of-plume and centerof-plume wells. In FY 2018 only well 03M848 was sampled within the ten edge-of-plume and center-ofplume wells. A summary of the statistical analyses was completed for well 03M848 and the other nine well were included with FY 2018 results for an overview of the site and is presented in Table 13-2. A spreadsheet and graph presenting the Mann-Kendall test results for the wells are provided in Appendix I.

The trend for 03M848, which has historically been the center of the South Plume, changed from no trend or stable to decreasing as concentrations have decreased over the last five sampling events. The TCE concentrations at 03M848 have steadily decreased from 1,400 μ g/L (FY 1996) to 700 μ g/L (FY 1999) to 450 μ g/L (FY 2003) to the current concentration of 110 μ g/L in FY 2018. However, recent low-level detections of degradation products associated with 1,1,1-trichloroethane (i.e. 1,1- Dichloroethane) at 03M848, may indicate that the North Plume is not only beginning to mingle with the South Plume at the

OU1-OU3 boundary, but may be present toward the center of the South Plume. In summary, based on the data collected in FY 2018, the center of the South Plume, represented by 03M848, indicates decreasing concentration trends. Recent data show that the North Plume may be present even toward the center of the South Plume and may also be a factor in the trends noted there.

Are contingency actions warranted?

No. The OU3 ROD Amendment requires contingency actions to be considered when the Mann-Kendall statistical analysis shows that a well at the edge of the South Plume has an increasing trend. The wells analyzed in FY 2017 showed a decreasing trend.

What groundwater monitoring is proposed before the next report?

Since the 1,4-dioxane issue in FY 2015, sampling has been conducted including 1,4-dioxane. FY 2019 will continue monitoring for 1,4-dioxane. The proposed OU3 monitoring requirements are presented in Table 13-3 and Appendix A.

13.3 Remedy Component #3: Drilling Advisories

Description: "Continued implementation of the drilling advisories that regulates the installation of new private wells within OU3 as a Special Well Construction Area." (OU3 ROD Amendment, page 17).

Performance Standard (how do you know when you're done):

When a SWCA Advisory is issued.

Has the MDH issued a Special Well Construction Area Advisory?

Yes, in June 1996. In June 1999, via the MDH the SWCA boundary extended southwest including the Mississippi River and Marshall Avenue to ensure plume coverage. The SWCA also covers OU3 and all of OU2 as of April 2016, with the current boundary shown on Figure E-1 (Appendix E).

Are any changes or additional actions required for this remedy component? No.

13.4 Overall Remedy for OU3

Is the Remedy for OU3 Operating in Compliance with the OU3 ROD and OU3 ROD Amendment?

Yes. In FY 2018, groundwater monitoring took place as prescribed in the Annual Monitoring Plan. The annual sampling round of FY 2018 indicates that the South Plume footprint appears to be decreasing or at least stable, with a stable to decreasing trend at the center of the plume.

Are any changes or additional actions required for OU3?

No. No additional actions are necessary because no increasing trends at the edge of the plume were identified by the statistical analysis.

13.5 Other Related Activity in FY 2018

In 2018, samples from 18 wells were collected for 1,4-dioxane for OU3 annual sampling presented in Table 13-4. The wells sampled contained 1,4-dioxane concentrations similar to those reported for the previous sampling events.

14 OTHER INSTALLATION RESTORATION ACTIVITIES DURING FY 2018

This section summarizes the status of other activities that are related to the Installation Restoration Program but are not required in the RODs for OU1 through OU3.

14.1 Round Lake

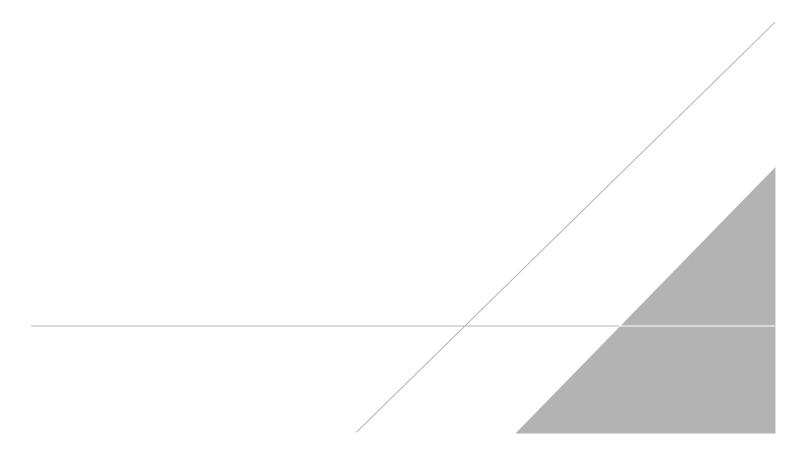
The *Tier II Ecological Risk Assessment Report* (USACHPP 2004) for aquatic sites (including Round Lake), was approved by the MPCA and USEPA in December 2004. In June 2005, the Army submitted a draft FS for aquatic sites to support the risk management decisions with respect to "No Further Action" or "Implement a Remedy" for each aquatic site. Based on comments to the draft FS, it was agreed to conduct additional sampling of Marsden Lake and Pond G, which was completed in 2008. A revised FS was submitted in January 2009. Based on comments received and resolution thereof, the Army then submitted a revised (redlined) FS in April 2010. After review of this report, USEPA and MPCA requested that the Army prepare a work plan for collection of additional Round Lake sediment data. Given the time required to collect the additional data, the Army, USEPA, and MPCA agreed to separate the FS for aquatic sites into two documents: one for Round Lake and one for Rice Creek, Sunfish Lake, Marsden Lake, and Pond G.

The USEPA and MPCA provided consistency for the QAPP for Round Lake Sediment Investigation in January 2011. The sediment sampling work was completed in January – February 2011. A *Draft Summary of Investigation Findings* was submitted in May 2011, and a meeting between Army, USEPA, MPCA, Minnesota Department of Natural Resources, U.S. Fish and Wildlife Service, and the TCAAP Restoration Advisory Board was held in June 2011 for preliminary discussion of the findings. Final core dating results were distributed in February 2012. In March 2012, the Army provided responses to the stakeholder comments on the Round Lake portion of the April 2010 FS, which had been placed on hold pending collection and evaluation of the 2011 sediment data. A comment resolution meeting was then held in April 2012, and a TCAAP Restoration Advisory Board meeting was held in May 2012, primarily to discuss the status of the Round Lake FS.

With USEPA and MPCA agreement, the Army initiated a strategy to revise the FS in segments, with the intent to gain agreement/approval at key steps along the way. In accordance with this strategy, the Army submitted revised Sections 1 through 5 of the Round Lake FS in August 2012, and the USEPA and MPCA provided comments in September 2012. The Army sought clarifications on these comments, and ultimately submitted responses to those comments and the proposed redlines to Sections 1 through 5 in January 2013. The USEPA and MPCA provided comments to that submittal in March 2013. Through this process (and the multiple earlier drafts of the FS), it became clear that the Army, USEPA, and MPCA did not agree on the ecological risks and commensurate remedy associated with Round Lake. Given the difficulty reaching a consensus, the Army Environmental Command desired a fresh look at the ecological risk by someone who has national experience with such matters and obtained the assistance of the Risk and Regulatory Analysis Team of the Environmental Sciences Division at the Oak Ridge National Laboratory. In early FY 2014, the Army submitted a *Supplemental Remedial Investigation and Feasibility Study for Round Lake* (Wenck 2013a) which incorporated the *Supplemental Ecological Risk Assessment*

(Oak Ridge National Laboratory 2013). Comments received from the USEPA and MPCA in March 2014 indicated that significant disagreement remained. In April 2014, the Army, USEPA, and MPCA entered an "informal dispute resolution" phase which continued in FY 2015 and FY 2016. In a teleconference between the USEPA Region 5 Federal Facilities Chief and Headquarters Department of Army personnel on September 20, 2016, an agreement was reached in which Army would submit a revised Supplemental Remedial Investigation and Feasibility Study in the third quarter of FY 2017. The document was submitted for regulator review on May 10, 2017. The regulators provided written comments in July 2017, with Army response issued on October 6, 2017. At the end of FY 2018a revised Final Supplemental Remedial Investigation and Feasibility Study for Round Lake was prepared and submitted to the USEPA and MPCA on September 7, 2018. After formal regulatory approval, the Draft Final Proposed Plan will be submitted followed by a public meeting and Draft Final ROD.

15 REFERENCES


Alliant Techsystems Inc. 2001. Preliminary Assessment 135 Primer Tracer Area. December 2001.

Army. 2004. OU1 Technical Group Technical Memorandum, Statistical Evaluation Method for Operable Unit 1 Water Quality Data. Final Report, December 2004.

Federal Facility Agreement. August 12, 1997.

- Montgomery Watson. 1995. Operable Unit 1 Alternate Water Supply Plan. Final Report, October 1995.
- Mossler, John H. 2013. M-194 Bedrock Geology of the Twin Cities Ten-County Metropolitan Area, Minnesota. Retrieved from the University of Minnesota Digital Conservancy, <u>http://hdl.handle.net/11299/154925</u>.
- MPCA and USEPA. 2000. Evaluation of Natural Attenuation of Chlorinated Solvents in Ground Water at the Twin Cities Army Ammunition Plant. June 2000.
- Oak Ridge National Laboratory. 2013. Supplemental Ecological Risk Assessment. October 2013.
- Pika-Arcadis JV. 2016. Quality Assurance Project Plan for Performance Monitoring. September 2016.
- Pika-Arcadis JV. 2017. Addendum #1 Quality Assurance Project Plan for Performance Monitoring. May 2017.
- Stone & Webster Environmental Technology & Services. 1997. Final Site A Investigation Report. December 1997.
- USACHPPM. 2004. Tier II Ecological Risk Assessment Report. December 2004.
- USEPA. 1987. Interim Response Action Plan. 1987.
- Wenck and Keres Consulting Inc. 2006. Groundwater Investigation Report for Building 102, Twin Cities Army Ammunition Plant. January 2006.
- Wenck. 2008a. Site A Shallow Groundwater 10-year Evaluation Report. July 2008.
- Wenck. 2008b. Site A Shallow Groundwater: Monitoring and Contingency Plan. September 2008.
- Wenck. 2008c. Site C Groundwater Extraction System Evaluation Report. November 2008.
- Wenck. 2013a. Supplemental Remedial Investigation and Feasibility Study for Round Lake. 2013.
- Wenck. 2013b. Remedial Action Completion and Close Out Report, Pond G. November 2013.
- Wenck. 2014. Site A Vapor Intrusion Investigation Report. February 2014.
- Wenck. 2016. Final Documentation Report Compendium. July 2016.

TABLES

Remedy Component	Is the component being implemented?	Is the component doing what it is supposed to?	Has the component undergone final closeout?	Comments
Operable Unit 1: Deep Groundwater				
#1 Alternate Water Supply/Well Abandonment	Yes	Yes	No	
#2 Drilling Advisories	Yes	Yes	No	
#3 Extract Groundwater	No	No	No	NBCGRS pumping has temporarily been suspended (referred to as a "Remedy Time-out") to allow the City of New Brighton to design and construct a 1,4-dioxane treatment system, which will allow a return to normal pumping.
#4 Removal of VOCs by GAC (Discharge Quality)	No	No	No	See comment for Remedy Component #3.
#5 Discharge of Treated Water	No	No	No	See comment for Remedy Component #3.
#6 Groundwater Monitoring with Verification of Continuing Aquifer Restoration	Yes	Yes	No	
Overall Remedy	Partially	Not Applicable	No	Yes for components being implemented
Operable Unit 2: Shallow Soil Sites				
#1-7 Soil Remediation				
Site A	Yes	Yes	Yes	
Site C	Yes	Yes	Yes	
Site E	Yes	Yes	Yes	
Site H	Yes	Yes	Yes	
Site 129-3	Yes	Yes	Yes	
Site 129-5	Yes	Yes	Yes	
Grenade Range	Yes	Yes	Yes	
Outdoor Firing Range	Yes	Yes	Yes	
135 PTA Stormwater Ditch	Yes	Yes	Yes	
535 Primer/Tracer Area	Yes	Yes	Yes	
Site K Soils	Yes	Yes	Yes	
Water Tower Area	Yes	Yes	Yes	
Soil AOCs (Site A, 135 PTA, EBS Areas)	Yes	Yes	Yes	
#8 Groundwater Monitoring	Yes	Yes	Yes	
#9 Characterization of Dumps	Yes	Yes	Yes	
Site B	Yes	Yes	Yes	
Site 129-15	Yes	Yes	Yes	
#10 Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
Overall Remedy	Yes	Yes	Partially	

	Remedy Component	Is the component being implemented?	Is the component doing what it is supposed to?	Has the component undergone final closeout?	Comments
Oper	able Unit 2: Deep Soil Sites				
#1	Groundwater Monitoring	Yes	Yes	Yes	
#2	Restrict Site Access During Remediation	Yes	Yes	Yes	Long-term land use controls are addressed by Remedy Component #8
#3	SVE Systems	Yes	Yes	Yes	Systems were turned off in 1998.
#4	Enhancements to SVE Systems	Yes	Yes	Yes	Neither system required operation with enhancements. Both SVE systems have been dismantled.
#5	Maintain Existing Site Caps	Yes	Yes	Yes	This remedy component was intended to minimize short-circuiting of airflow when the SVE systems were operating. The long-term land use controls for the cap/cover that must be maintained at Sites D and G (due to shallow soil contamination at Site D and the Site G dump) are addressed by Remedy Component #8
#6	Maintain Surface Drainage Controls	Yes	Yes	Yes	
#7	Characterize Shallow Soils and Dump	Yes	Yes	Yes	
#8	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
	Overall Remedy	Yes	Yes	Partially	
Oper	able Unit 2: Site A Shallow Groundwater				
#1	Groundwater Monitoring	Yes	Yes	No	
#2	Groundwater Containment/Mass Removal	No	Not Applicable	No	The groundwater extraction system was shut off on 9/24/08 and was in standby while implementation of MNA was evaluated. In late 2015, MNA was deemed an acceptable remedy, and therefore a ROD amendment was prepared in FY2017 to document the change in this remedy component.
#3A	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
#3B	Drilling Advisory/Alternate Water Supply/Well Abandonment	Yes	Yes	No	
#4	Discharge of Extracted Water	No	Not Applicable	No	See comment for Remedy Component #2.
#5	Source Characterization Remediation	Yes	Yes	Yes	
	Overall Remedy	Yes	Yes	No	USEPA and MPCA have approved a formal change of the remedy to MNA. A ROD amendment was prepared and approved in FY 2017

	Remedy Component	Is the component being implemented?	Is the component doing what it is supposed to?	Has the component undergone final closeout?	Comments
Ope	rable Unit 2: Site C Shallow Groundwater				
#1	Groundwater and Surface Water Monitoring	Yes	Yes	No	
#2	Groundwater Containment	No	Not Applicable	No	Since the lead plume no longer extends to the extraction wells, the groundwater extraction system was shut off on 11/13/08. Future monitoring will determine whether a ROD modification will be prepared to document the change in this remedy component, or whether the Site can be closed.
#3	Discharge of Extracted Water	No	Not Applicable	No	See comment for Remedy Component #2.
#4	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
	Overall Remedy	Yes	Yes	No	
Ope	rable Unit 2: Site I Shallow Groundwater				
#1	Groundwater Monitoring	Yes	Yes	No	
#2	Additional Investigation	Yes	Yes	Yes	
#3	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
	Overall Remedy	Yes	Yes	No	
Ope	rable Unit 2: Site K Shallow Groundwater				
#1	Groundwater Monitoring	Yes	Yes	No	
#2	Sentinel Wells	Yes	Yes	Yes	
#3	Hydraulic Containment	Yes	Yes	No	
#4	Groundwater Treatment	Yes	Yes	No	
#5	Treated Water Discharge	Yes	Yes	No	
#6	Discharge Monitoring	Yes	Yes	No	
#7	Additional Investigation	Yes	Yes	Yes	
#8	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
_	Overall Remedy	Yes	Yes	No	
Ope	rable Unit 2: Building 102 Shallow Groundwater				
#1	Monitored Natural Attenuation	Yes	Yes	No	
#2	Groundwater Monitoring	Yes	Yes	No	
#3	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
	Overall Remedy	Yes	Yes	No	

	Remedy Component	Is the component being implemented?	Is the component doing what it is supposed to?	Has the component undergone final closeout?	Comments
Оре	rable Unit 2: Aquatic Sites				
#1	Pond G Surface Water Treatment	Yes	Yes	Yes	
#2	Pond G Surface Water Monitoring	Yes	Yes	Yes	
	Overall Remedy	Yes	Yes	Partially	
Ope	rable Unit 2: Deep Groundwater				
#1	Hydraulic Containment and Contaminant Mass Removal	Yes	Yes	No	
#2	Groundwater Treatment	Yes	Yes	No	
#3	Treated Water Discharge	Yes	Yes	No	
#4	Land Use Controls	Yes	Yes	No	Implementation of the OU2 LUCRD is an ongoing requirement.
#5	Review of New Technologies	Yes	Yes	No	Currently evaluating optimization strategies for the TGRS
#6	Groundwater Monitoring	Yes	Yes	No	
	Overall Remedy	Yes	Yes	No	
Ope	rable Unit 3: Deep Groundwater				
#1	Monitored Natural Attenuation	Yes	Yes	No	
#2	Groundwater Monitoring	Yes	Yes	No	Long-term land use controls are addressed by Remedy Component #8
#3	Drilling Advisories	Yes	Yes	No	
	Overall Remedy	Yes	Yes	No	

Acronyms and Abbreviations:

GAC - granular activated carbon

MNA - monitored natural attenuation

NBCGRS - New Brighton Contaminated Groundwater Recovery System

OU2 LUCRD - Operable Unit 2 Land Use Control Remedial Design

ROD - Record of Decision

SVE - soil vapor extraction

TGRS - TCAAP Groundwater Recovery System

VOC - volatile organic compound

Table 2-1 Comparison Study Relative Percent Difference Results FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, MInnesota

	Dete Originalis I	Sampling	1,4-Dioxane	Lead	1,1,1-Trichloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	Benzene	Chloroform	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene	Vinyl chloride
Well ID	Date Sampled	Method	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L	μg/L	µg/L
	7/24/2018	low-flow						0.70	< 1.00	6.80	< 1.00	710	< 1.00	0.36	
01U139	7/31/2018	standard purge						0.67	< 1.00	7.30	< 1.00	780	< 1.00	0.48	
		RPD						-4.38	0.00	7.09	0.00	9.40	0.00	28.6	
	7/25/2018	low-flow						< 1.00	< 1.00	2.60	< 1.00	300	< 1.00	0.31	
01U355	7/24/2018	standard purge						< 1.00	< 1.00	1.50	< 1.00	180	< 1.00	0.52	
		RPD						0.00	0.00	-53.7	0.00	-50.0	0.00	50.6	
	7/27/2018	low-flow		2.30											
01U563	7/27/2018	standard purge		3.50											
		RPD		41.4											
	7/27/2018	low-flow	< 0.07					< 1.00				< 1.00		< 1.00	< 1.00
01U584	7/27/2018	standard purge	< 0.07					< 1.00				< 1.00		< 1.00	< 1.00
		RPD	0.00					0.00				0.00		0.00	0.00
	7/11/2018	standard purge			1.40	< 1.00	2.40	3.90				4.90		150	
03L822	7/17/2018	no-purge	16.9		0.57	< 1.00	2.20	3.60				5.00		130	
		RPD			84.3	0.00	8.70	8.00				-2.02		14.3	
	7/17/2018	standard purge	2.50		1.00	1.00	1.00	1.00				0.56		1.00	
03L841	7/20/2018	no-purge	2.60		1.00	1.00	1.00	0.31				0.51		0.51	
		RPD	-3.92		0.00	0.00	0.00	105				9.35		64.9	
	7/13/2018	standard purge			14.0	1.00	32.0	34.0				7.20		520	
04J847	7/19/2018	no-purge	45.1		11.0	1.00	33.0	32.0				6.90		640	
		RPD			24.0	0.00	-3.08	6.06				4.26		-20.7	
	7/11/2018	standard purge			0.80	< 1.00	0.47	0.76				< 1.00		1.50	
04J849	7/19/2018	no-purge	0.35		0.63	< 1.00	0.41	0.65				< 1.00		1.30	
		RPD			23.8	0.00	13.6	15.6				0.00		14.3	
	7/12/2018	standard purge			8.40	< 1.00	9.50	15.0				1.70		150	
04U843	7/19/2018	no-purge	13.8		25.0	< 1.00	21.0	36.0				3.50		220	
		RPD			-99.4	0.00	-75.4	-82.4				-69.2		-37.8	
	7/12/2018	standard purge			3.30	< 1.00	23.0	23.0				4.30		390	
04U847	7/19/2018	no-purge	23.1		1.60	< 1.00	17.0	15.0				2.60		160	
		RPD			69.4	0.00	30.0	42.1				49.3		83.6	
	7/11/2018	standard purge			2.00	< 1.00	4.00	5.10				0.95		57.0	
04U849	7/19/2018	no-purge	8.60		1.80	< 1.00	3.40	3.80				0.81		52.0	
		RPD			10.5	0.00	16.2	29.2				15.9		9.17	
	7/17/2018	standard purge	6.40		1.90	< 1.00	0.33	0.41				< 1.00		31.0	
409550	7/20/2018	no-purge	6.10		1.70	< 1.00	0.31	0.47				< 1.00		28.0	
		RPD	4.80		11.1	0.00	6.25	-13.6				0.00		10.2	

Acronyms and Abbreviations:

--- = not sampled

RPD = Relative Percent Difference

µg/L = micrograms per liter

Table 3-1 Summary of OU1 Monitoring Requirements FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Remedy Component	Monitoring Requirements	Implementing Party	Documents Containing the Monitoring Plan
#1: Alternate Water Supply / Well Abandonment	a. Water quality data for the perimeter of the plume to define the area of concern	Army	OU1 Groundwater Monitoring Plan in the Annual Performance Report
	 Water quality data for water supply wells to determine eligibility for alternate supply/abandonment 	Army	Well Inventory Report
#2: Drilling Advisories	a. Verification that drilling advisories are in place and functioning as intended	Army/MDH	N/A
#3: Extract Groundwater	a. Pumping volume and rates for each extraction well for comparison to target flowrates	New Brighton	New Brighton Water System Sampling and Analysis Plan
	b. Water levels from monitoring wells to draw contour maps, if desired	Army	OU1 Groundwater Monitoring Plan in the Annual Performance Report
#4: Removal of VOCs	a. Effluent water quality to demonstrate compliance with the Safe Drinking Water Act	New Brighton	New Brighton Water System Sampling and Analysis Plan
#5: Discharge of Treated Water	a. Verification of discharge	New Brighton	N/A
#6: Groundwater Monitoring with Verification of Continuing Aquifer Restoration	a. Water quality, to assist in evaluation of statistical improvements in groundwater quality.	Army	OU1 Groundwater Monitoring Plan in the Annual Performance Report
	b. Water quality data throughout the North Plume to evaluate remedial progress	Army	OU1 Groundwater Monitoring Plan in the Annual Performance Report

Acronyms and Abbreviations:

MDH - Minnesota Department of Health

N/A - not applicable

OU1 - Operable Unit 1

Table 3-2OU1 Groundwater Quality DataFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

Sample	Date	Trichloroethene	1,1,1-Trichloroethane	1,4-Dioxane	1,1-Dichloroethene	cis-1,2-Dichloroethene	1,1,2-Trichloroethane	1,1-Dichloroethane
Location		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
OU1 Cleanup Le	evel ^a	5	200		6	70	3	70
MDH HRL ^b				1				
03L811	7/19/2018	11	< 1.0 U	18.0	0.50 J	< 1.0 U	< 1.0 U	0.47 J
03L822	7/17/2018	130	0.57 J	16.9	3.6	5.0	< 1.0 U	2.2
03L832	7/20/2018	4.0	< 1.0 U	0.24	< 1.0 U	0.33 J	< 1.0 U	< 1.0 U
03L841	7/17/2018	< 1.0 U	< 1.0 U	2.5	< 1.0 U	0.56 J	< 1.0 U	< 1.0 U
03L841	7/20/2018	0.51 J	< 1.0 U	2.6	0.31 J	0.51 J	< 1.0 U	< 1.0 U
03L846	7/19/2018	0.58 J	< 1.0 U	13.9	4.5	13	< 1.0 U	7.6
03M843	7/19/2018	< 1.0 U	< 1.0 U	14.4	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
03U811	7/19/2018	< 1.0 U	< 1.0 U	11.0	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
03U821	8/2/2018	6.9	< 1.0 U	12.4	0.39 J	< 1.0 U	< 1.0 U	0.42 J
03U822	7/17/2018	42	< 1.0 U	9.8	1.6	4.0	< 1.0 U	1.4
04J822	7/19/2018	2.3	< 1.0 U	0.61	1.3	4.1	< 1.0 U	1.5
04J834	7/23/2018	< 1.0 U	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04J836	7/30/2018	26	< 1.0 U	4.0	2.0	1.2	< 1.0 U	1.9
04J837	7/23/2018	2.0	< 1.0 U	0.44	< 1.0 U	0.46 J	< 1.0 U	< 1.0 U
04J838	7/20/2018	0.91 J	< 1.0 U	0.16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04J838 (Dup)	7/20/2018	0.78 J	< 1.0 U	0.35	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04J839	7/19/2018	6.1	< 1.0 U	0.42	0.39 J	< 1.0 U	< 1.0 U	< 1.0 U
04J847	7/19/2018	640	11	45.1	32	6.9	< 1.0 U	33
04J849	7/19/2018	1.3	0.63 J	0.35	0.65 J	< 1.0 U	< 1.0 U	0.41 J
04J882	7/23/2018	< 1.0 U	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04J882 (Dup)	7/23/2018	< 1.0 U	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04U821	8/2/2018	13	< 1.0 U	12.9	0.86 J	< 1.0 U	< 1.0 U	0.91 J
04U834	7/23/2018	6.1	< 1.0 U	0.44	0.34 J	< 1.0 U	< 1.0 U	< 1.0 U
04U836	7/30/2018	18	0.36 J	2.1	1.4	1.2	< 1.0 U	1.3
04U837	7/23/2018	2.2	< 1.0 U	0.36	< 1.0 U	0.37 J	< 1.0 U	< 1.0 U
04U838	7/20/2018	47	0.77 J	3.2	2.9	1.1	< 1.0 U	2.0
04U839	7/19/2018	41	0.51 J	4.7	2.9	2.9	< 1.0 U	2.8
04U841	7/20/2018	10	1.1	2.7	1.6	0.50 J	< 1.0 U	1.1
04U843	7/19/2018	220	25	13.8	36	3.5	< 1.0 U	21
04U844	7/31/2018	160	7.5	13.9	13	3.6	< 1.0 U	12

Notes and Abbreviations on Page 2.

Table 3-2 OU1 Groundwater Quality Data FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Sample	Date	Trichloroethene	1,1,1-Trichloroethane	1,4-Dioxane	1,1-Dichloroethene	cis-1,2-Dichloroethene	1,1,2-Trichloroethane	1,1-Dichloroethane
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
OU1 Cleanup Le	OU1 Cleanup Level ^a		200		6	70	3	70
MDH HRL ^b				1				
04U846	7/19/2018	17	< 1.0 U	14.2	7.0	17	< 1.0 U	9.9
04U847	7/19/2018	160	1.6	23.1	15	2.6	< 1.0 U	17
04U849	7/19/2018	52	1.8	8.6	3.8	0.81 J	< 1.0 U	3.4
04U850	8/1/2018	25	< 1.0 U	4.7	2.7	5.7	< 1.0 U	3.0
04U855	8/1/2018	21	0.33 J	6.5	1.1	< 1.0 U	< 1.0 U	1.1
04U871	7/30/2018	78	3.2	5.9	4.9	1.7	< 1.0 U	3.5
04U872	7/30/2018	7.0	< 1.0 U	1.2	0.43 J	< 1.0 U	< 1.0 U	0.71 J
04U875	8/1/2018	< 1.0 U	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04U877	7/30/2018	1.3	< 1.0 U	0.35	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04U879	8/1/2018	3.5	< 1.0 U	0.88	0.31 J	< 1.0 U	< 1.0 U	0.31 J
04U880	8/1/2018	< 1.0 U	< 1.0 U	0.018 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
04U881	8/3/2018	16	0.63 J	1.7	0.61 J	0.35 J	< 1.0 U	1.3
04U882	7/23/2018	14	0.67 J	1.3	0.88 J	< 1.0 U	< 1.0 U	0.75 J
04U883	8/1/2018	< 1.0 U	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
200154	7/30/2018	< 1.0 U	< 1.0 U	0.053 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
409547	7/30/2018	1.2	0.80 J	5.8	3.4	0.95 J	< 1.0 U	5.3
409548	8/1/2018	5.5	< 1.0 U	0.58	0.48 J	0.60 J	< 1.0 U	0.36 J
409549	8/1/2018	28	0.39 J	5.4	2.4	0.55 J	< 1.0 U	2.4
409550	7/20/2018	28	1.7	6.1	0.47 J	< 1.0 U	< 1.0 U	0.31 J
409555	8/1/2018	< 1.0 U	< 1.0 U	0.14	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
409556	9/20/2018	< 1.0 U	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
409557	7/30/2018	17	0.71 J	4.0	3.2	2.3	< 1.0 U	3.1
512761	7/30/2018	1.9	< 1.0 U	0.16	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
512761 (Dup)	7/30/2018	2.2	< 1.0 U	0.13	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U
PJ#318	8/2/2018	0.83 J	< 1.0 U	0.086	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U

Footnotes:

a. The cleanup level for OU1 Groundwater is from page 18 of OU1 Record of Decision. Gray shading indicates exceedance of the cleanup level.

b. No OU1 cleanup level has been established for 1,4-dioxane. For reference, the Minnesota Department of Health (MDH) Health Risk Limit (HRL) for 1,4-dioxane is 1 µg/L. Gray shading indicates exceedance of the HRL.

Acronyms and Abbreviations:

--- = no relevant cleanup level or HRL for this compound.

< X.X U = analyte was not detected above the Method Detection Limit (MDL)

Dup = duplicate

J = reported value is between the MDL and the Reporting Limit

OU = Operable Unit

µg/L = micrograms per liter

Table 3-3 Group 1, 2, 3, 5, and 6 Mann-Kendall Summary for OU1 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Group	S Value	P Value	R ² Value	Fraction of Detections	Results Trend	Threshold Triggered?	Comments
Group 2 Wells:							
03L673	-24	<0.001	0.860	8 / 8	Decreasing	No	
03L833	-17	0.0240	0.478	8 / 8	Decreasing	No	
03L848	-23	0.00184	0.843	8 / 8	Decreasing	No	
03L859	-23	0.00184	0.893	8 / 8	Decreasing	No	
03U677	NA	NA	NA	0 / 10	NA	No	All ND
03U805	20	0.00710	0.705	8 / 8	Increasing	Yes	Southern edge of north plume, plume shifted slightly
04U673	-16	0.0310	0.0942	8/8	Decreasing	No	Near south plume center, plume shifted slightly
04U821	-18	0.0160	0.603	8/8	Decreasing	No	
04U832	5	0.317	0.105	8 / 8	No Significant Trend	Yes	Relatively stable, between 41 and 59 μg/L since 2005
04U833	-30	<0.001	0.623	9/9	Decreasing	No	
04U841	-21	0.00500	0.690	8/8	Decreasing	No	
04U843	27	<0.001	0.976	8 / 8	Increasing	Yes	Near plume center
04U845	-15	0.0430	0.383	8/8	Decreasing	No	
04U846	19	0.0116	0.676	8/8	Increasing	Yes	Near plume center, historically erratic
04U854	-21	0.00500	0.769	8/8	Decreasing	No	
04U859	-27	<0.001	0.923	8/8	Decreasing	No	
04U861 (abandoned)	11	0.0280	0.752	6/6	NA	NA	Abandoned after 2006 sample, in New Brighton Development
04U875	-20	0.0220	0.325	4/9	Decreasing	No	
04U877	7	0.272	0.0814	9/9	No Significant Trend	Yes	
206688	-4	0.298	0.00700	6/6	No Significant Trend	Yes	
409549	14	0.0540	0.296	8/8	Probably Increasing	Yes	Near plume center, plume shifted slightly
409557	12	0.0890	0.117	8/8	Probably Increasing	Yes	Between north & south plume, lateral dispersion
Group 1 NP	-5	0.281	0.0971	7 / 7	No Significant Trend	Yes	
Group 1 SP	0	0.563	2010	7 / 7	Stable	Yes	
Group 3	-10	0.0935	0.335	7/7	Probably Decreasing	No	
Group 5	11	0.068	0.463	7/7	Probably Increasing	Yes	
Group 5 Unit 3 Wells:						1	
03L809	-11	0.114	0.470	8/8	No Significant Trend	Yes	Raw trend is decreasing
03L822	-21	0.00500	0.761	8/8	Decreasing	No	Ŭ
03U821	-26	< 0.001	0.786	8/8	Decreasing	No	
03U822	-5	0.317	0.230	8/8	No Significant Trend	Yes	Between 42 and 160 µg/L since 2005
03U831 (abandoned)	9	0.0680	0.405	2/6	NA	NA	Abandoned due to construction after 2007 sampling
409550	-13	0.0720	0.489	8/8	Probably Decreasing	No	Raw trend is decreasing
409596 (abandoned)	-8	0.102	0.633	6/6	NA	NA	Abandoned due to construction after 2007 sampling
409597 (abandoned)	-11	0.0280	0.809	6 / 6	NA	NA	Abandoned due to construction after 2007 sampling

Notes and Abbreviations on Page 2.

Table 3-3 Group 1, 2, 3, 5, and 6 Mann-Kendall Summary for OU1 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Group	S Value	P Value	R ² Value	Fraction of Detections	Results Trend	Threshold Triggered?	Comments
Group 6 OU1 Jordan W	ells:						
04J077	-24	0.00630	0.638	9/9	Decreasing	No	
04J702	-24	<0.001	0.570	8/8	Decreasing	No	
04J708	20	0.00710	0.678	8/8	Increasing	Yes	Southern edge of north plume, plume shifted slightly
04J713	NA	NA	NA	0/8	NA	No	All ND
04J822	-20	0.0220	0.610	9/9	Decreasing	No	
04J834	-20	0.00710	0.685	4 / 8	Decreasing	No	
04J836	22	0.0120	0.668	9/9	Increasing	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04J837	-15	0.0750	0.345	9/9	Probably Decreasing	No	Close proximity to NBCGRS wells, likely influenced by shutdown
04J838	6	0.274	0.0741	8/8	No Significant Trend	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04J839	8	0.238	0.134	9/9	No Significant Trend	Yes	Historically Below 5 µg/L
04J847	12	0.250	0.00741	13 / 13	No Significant Trend	Yes	Near plume center
04J849	24	0.00630	0.176	4/9	Increasing	Yes	Historically Below 1 µg/L.
04J882	NA	NA	NA	0/8	NA	No	All ND
Group 6 Nested Unit 4	Wells:						
04U077	-26	<0.001	0.858	8/8	Decreasing	No	
04U702	-8	0.199	0.0451	8/8	No Significant Trend	Yes	Below 3 µg/L
04U708	-20	0.00710	0.682	4/8	Decreasing	No	
04U713	-16	0.0310	0.414	5/8	Decreasing	No	
04U834	-13	0.0720	0.0000615	6/8	Probably Decreasing	No	
04U836	-7	0.272	0.0246	9/9	No Significant Trend	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04U837	-9	0.209	0.354	9/9	No Significant Trend	Yes	Raw trend is decreasing
04U838	5	0.317	0.00262	8/8	No Significant Trend	Yes	Historically below 3 µg/L
04U839	26	0.00290	0.642	9/9	Increasing	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04U847	-12	0.0890	0.354	8/8	Probably Decreasing	No	Raw trend is decreasing
04U849	10	0.138	0.357	8/8	No Significant Trend	Yes	Near plume center, appears relatively stable since 2011
04U882	-15	0.0430	0.491	7/8	Decreasing	No	

General Notes:

Response Threshold triggers are defined in Table D.2.1.3.

Acronyms and Abbreviations:

NA = not applicable; trend analysis not performed at this location

NBCGRS = New Brighton Contaminated Groundwater Recovery System

ND = non-detect

NP = North Plume

OU = Operable Unit

P Value = represents uncertainty in the trend

 R^2 Value = represents the fit of the data to the regression

S Value = indicates increasing (positive S) or decreasing (negative S) trend

SP = South Plume

µg/L = micrograms per liter

Table 6-1Summary of Site A Shallow Groundwater Monitoring RequirementsFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

a joint venture

Rem	edy Component	Monitoring Requirements	Implementing Party	Documents Containing the Monitoring Plan				
#1:	Groundwater Monitoring	a. Outlined below						
#2:	Containment and Mass	a. None. The groundwater extraction						
	Removal	system was shut down in September						
		2008 allowing implementation of						
		Monitored Natural Attenuation (MNA) to						
		be evaluated. In late 2015, MNA was						
		deemed an acceptable remedy, and						
		therefore a Record of Decision						
		amendment will be prepared in FY2016						
		to document the change in this remedy						
		component.						
	Land Use Controls	a. None						
#3B:	Alternate Water Supply / Well							
	Abandonment	Component #1 which also includes the						
		area north of Site A						
#4:	Discharge of Extracted Water	a. None (see #2 above)						
#5:	Source Characterization /	a. None. volatile organic compound-						
	Remediation	contaminated soils in the source area						
		(1945 Trench) were excavated and						
		transported to a permitted offsite						
		disposal facility in FY 2003.						
OR:	Overall Remedy (Attainment	a. Water quality data throughout the Site A						
	of Cleanup Goals)	plume to evaluate attainment and to	Army	Site A Monitoring Plan in the Annual				
		verify that Natural Attenuation is		Performance Report				
		adequately controlling plume migration.						

Table 6-2 Site A Groundwater Quality Data FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Sample Location	Date	Tetrachloroethene ug/L	Trichloroethene ug/L	1,4-Dioxane ug/L	cis-1,2-Dichloroethene ug/L	1,1-Dichloroethene ug/L	1,2-Dichloroethane ug/L	Chloroform ug/L	Benzene ug/L	Antimony ug/L
Site A Cleanup I	Level ^a	7	30		70	6	4	60	10	6
MDH HRL ^b				1						
01U039	7/24/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U102	7/18/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U103	7/24/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	6.7
01U108 °		NS	NS	NS	NS	NS	NS	NS	NS	NS
01U115	7/18/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U116	7/18/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U117	7/18/2018	2.5	< 1.0 U	NA	1.8	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U126	7/24/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U126 (Dup)	7/24/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U138	7/18/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U138 (Dup)	7/18/2018		< 1.0 U	NA	< 1.0 U	< 1.0 U				NA
01U139	7/24/2018	< 1.0 U	0.36 J	NA	710	0.70 J	< 1.0 U	< 1.0 U	6.8	NA
01U140	7/31/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U157	7/31/2018	< 1.0 U	< 1.0 U	NA	0.68 J	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U158	7/25/2018	< 1.0 U	0.34 J	NA	12	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U350 ^{c,d}	7/18/2018	0.90 J	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U352 ^d	7/31/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U353 ^d	7/25/2018	< 1.0 U	< 1.0 U	NA	1.0	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U355 ^d	7/25/2018	< 1.0 U	0.31 J	NA	300	< 1.0 U	< 1.0 U	< 1.0 U	2.6	NA
01U356 ^d	7/18/2018	< 1.0 U	< 1.0 U	NA	5.8	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U357 ^d	7/25/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U358 ^d	7/25/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA

Notes and Abbreviations on Page 2.

Table 6-2 Site A Groundwater Quality Data FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Sample Location	Date	Tetrachloroethene ug/L	Trichloroethene ug/L	1,4-Dioxane ug/L	cis-1,2-Dichloroethene ug/L	1,1-Dichloroethene ug/L	1,2-Dichloroethane ug/L	Chloroform ug/L	Benzene ug/L	Antimony ug/L
Site A Cleanup Level ^a		7	30		70	6	4	60	10	6
MDH HRL ^b				1						
01U901	7/20/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U902	7/20/2018	< 1.0 U	< 1.0 U	NA	92	< 1.0 U	< 1.0 U	< 1.0 U	1.1	< 2.0 U
01U902 (Dup)	7/20/2018	< 1.0 U	0.30 J	NA	89	< 1.0 U	< 1.0 U	< 1.0 U	1.2	< 2.0 U
01U903	7/20/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
01U904	7/20/2018	< 1.0 U	< 1.0 U	NA	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 1.0 U	< 2.0 U

Footnotes:

a. The cleanup level for Site A Groundwater is from Table 1 of OU2 Record of Decision. Gray shading indicates exceedance of the cleanup level.

b. No Site A cleanup level has been established for 1,4-dioxane. For reference, the Minnesota Department of Health (MDH) Health Risk Limit (HRL) for 1,4-dioxane is 1 µg/L. Gray shading indicates exceedance of the HRL.

c. 01U108 was not sampled due to an obstruction in the well. 01U350 was sampled as an alternate.

d. The extraction wells are currently in standby (not operating) while Monitored Natural Attenuation (MNA) is being evaluated.

Acronyms and Abbreviations:

--- = no relevant cleanup level or HRL for this compound

< X.X U = analyte was not detected above the Method Detection Limit (MDL)

Dup = duplicate

J = reported value is between the MDL and the Reporting Limit

NA = sample was not analyzed for compound

NS = not sampled

OU = Operable Unit

µg/L = micrograms per liter

Table 7-1Summary of Site C Shallow Groundwater Monitoring RequirementsFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

a joint venture

Ren	nedy Component		Monitoring Requirements	Implementing Party	Documents Containing the Monitoring Plan
#1:	Groundwater and Surface Water Monitoring	a.	Outlined below		
#2:	Groundwater Containment	a.	None. The groundwater extraction system was shut down in November 2008, since the area of groundwater that exceeded the groundwater cleanup level no longer extended to the extraction wells.		
#3:	Discharge of Extracted Water	a.	None (see #2 above)		
#4:	Land use controls to Restrict Well Installation and to Protect the Remedy Infrastructure	a.	None.		
OR:	Overall Remedy (Attainment of Cleanup Goals)	a.	Groundwater quality data throughout the Site C plume to evaluate attainment and to verify that operation of a groundwater extraction system is not required. Also surface water data in the plume vicinity to verify that groundwater does not impact surface water above surface water standards.	Army	Site C Monitoring Plan in the Annual Performance Report

Table 7-2Water Quality Data for Site C GroundwaterFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

Sample Location	Date	Lead (Dissolved) (µg/L)
Site C Cleanup Level ^a		15
01U046	7/31/2018	< 1.0 U
01U561 (MW-1)	8/1/2018	< 1.0 U
01U561 (MW-1 - Dup)	8/1/2018	< 1.0 U
01U562 (MW-2)	8/1/2018	< 1.0 U
01U563 (MW-3)	7/27/2018	2.3
01U564 (MW-4)	8/2/2018	< 1.0 U
01U567 (MW-7)	8/1/2018	< 1.0 U
01U571 (MW-11)	8/1/2018	< 1.0 U
01U573 (MW-13)	8/1/2018	150
01U574 (MW-14)	8/2/2018	61
01U575 (MW-15)	8/1/2018	< 1.0 U
01U576 (MW-16)	8/2/2018	8.3

Footnotes:

a. The cleanup level for Site C Groundwater is from Table 1 of OU2 Record of Decision Amendment #1. Gray shading indicates exceedance of the cleanup level.

Acronyms and Abbreviations:

< X.X U = analyte was not detected above the Method Detection Limit (MDL)

Dup = duplicate

J = reported value is between the MDL and the Reporting Limit

OU = Operable Unit

µg/L = micrograms per liter

Table 7-3Water Quality Data for Site C Surface WaterFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

Sample Location	Date	Lead (Dissolved) (µg/L)				
Surface Water Cleanup Level ^a		6.9				
NE Wetlands	7/24/2018	4.9				
NE Wetlands	7/25/2018	< 1.0 U				
NE Wetlands	7/26/2018	< 1.0 U				
SW-5	7/24/2018	0.73 J				
SW-5	7/25/2018	< 1.0 U				
SW-5 (Dup)	7/25/2018	< 1.0 U				
SW-5	7/26/2018	< 1.0 U				
SW-6	7/24/2018	0.35 J				
SW-6	7/25/2018	< 1.0 U				
SW-6	7/26/2018	< 1.0 U				

Footnotes:

a. The cleanup level for Site C Surface Water is from Table 1 of OU2 Record of Decision Amendment #1. Gray shading indicates exceedance of the cleanup level.

Acronyms and Abbreviations:

< X.X U = analyte was not detected above the Method Detection Limit (MDL)

Dup = duplicate

J = reported value is between the MDL and the Reporting Limit

OU = Operable Unit

µg/L = micrograms per liter

Table 7-4Contingency Locations for Site C MonitoringFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

CONTINGENCY ROLE Sampling Location Contingency Action Trigger for Contingency Action^a MW-4 If 3-event moving average > 15 µg/L Note c **MW-7** If 3-event moving average > 15 µg/L Note c MW-11 If 3-event moving average > 15 µg/L Note c MW-16 If 3-event moving average > 15 µg/L Note c 01U046 If 3-event moving average > 6.9 µg/L Note d NE Wetland ^b If one sampling event > 6.9 µg/L Note d SW5^b If one sampling event > 6.9 µg/L Note d SW6^b If one sampling event > 6.9 µg/L Note e

Footnotes:

a. Water quality monitoring is for dissolved lead in monitoring wells and surface water.

b. Surface water sampling is performed on three consecutive days and results are averaged for comparison to the trigger.

c. Army notify USEPA/MPCA within 1 week from receipt of data and submit an evaluation report within 30 days from notification.

d. Army notify USEPA/MPCA within 1 week from receipt of data; initiate monthly sampling of SW-5, SW-6, the NE Wetland, and the replacement wetland; and submit an evaluation report within 30 days from notification.

e. Army notify USEPA/MPCA within 1 week from receipt of data; initiate monthly sampling of SW-5, SW-6, the NE Wetland, and the replacement wetland; and submit an evaluation report within 30 days from notification. If SW-6 exceedance continues for 3 consecutive months, contain the surface water at SW-6, treat (if necessary) and discharge to sanitary sewer.

Acronyms and Abbreviations:

MPCA - Minnesota Pollution Control Agency USEPA - United States Environmental Protection Agency

Table 8.1

Summary Of Groundwater Monitoring Requirements Fiscal Year 2018 Site I, OU2 Arden Hills, Minnesota

Ren	nedy Component	Monitoring Requirements	Responsible Party	Documents Containing the Monitoring Plan
#1	Groundwater Monitoring	a. Groundwater quality and water levels to track remedy progress	Northrop-Grumman Innovation Systems	Site I Monitoring Plan in Annual Performance Report
#2	Additional Investigation	a. None (completed)		
#3	Land Use Controls	a. None		
OR	Overall Remedy	a. Water quality data to evaluate attainment	Northrop-Grumman Innovation Systems	Site I Monitoring Plan in Annual Performance Report

Table 8.2

Most Recent Groundwater Quality Data (FY 2018) Site I, OU2 Arden Hills, Minnesota

				cis-1,2-Dichloroethene		trans-1,2-Dichloroethene		Trichloroethene			Vinyl Chloride	
Site I	Site I Cleanup Level ⁽¹⁾			70 (total)			30			0.20		
Location	Date	Dup		µg/L		µg/L		µg/L			µg/L	
01U064	4/26/2013			4.2	<	1.0		0.94	JP	<	1.0	
01U632	4/26/2013			27		0.35 JP		120		<	1.0	
01U636	4/26/2013		<	1.0	<	1.0	<	1.0		<	1.0	
01U639	4/26/2013		<	1.0	<	1.0		9.5		<	1.0	
01U640	4/26/2013		<	1.0	<	1.0	<	1.0		<	1.0	
I01MW	4/26/2013		<	1.0	<	1.0		0.33	JP	<	1.0	
102MW	4/26/2013		<	1.0	<	1.0		0.62	JP	۷	1.0	
102MW	4/26/2013	D	<	1.0	<	1.0		0.76	JP	<	1.0	
105MW	4/26/2013		<	1.0	<	1.0		1.6		۷	1.0	
01U667	8/13/2013			500		1.4		4.7			300	

Notes:

- ⁽¹⁾ Cleanup levels for Site I are from the OU2 ROD. Shading indicates exceedence of the cleanup level.
- D Field Duplicate
- JP Result is qualified as estimated since the detection is below the laboratory quantitation limit.

Summary Of Groundwater Monitoring Requirements Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

Rer	nedy Component	M	onitoring Requirements	Responsible Party	Documents Containing the Monitoring Plan
#1	Groundwater Monitoring	•	Outlined below		
#2	Sentinel Wells	a.	Water quality to monitor potential migration	Northrop-Grumman Innovation Systems	Site K Monitoring Plan in Annual Performance Report
#3	Hydraulic Containment	a.	Water levels for use in drawing contour maps showing capture	Northrop-Grumman Innovation Systems	Site K Monitoring Plan in Annual Performance Report
		b.	Pumping volumes and rates for reporting	Northrop-Grumman Innovation Systems	Site K Monitoring Plan in Annual Performance Report
#4	Groundwater Treatment	•	None		
#5	Treated Water Discharge	•	None		
#6	Discharge Monitoring	a.	Treated effluent water quality for comparison to substantive requirements criteria for discharge maximum daily concentration	Northrop-Grumman Innovation Systems	Site K Monitoring Plan in Annual Performance Report
#7	Additional Investigation	a.	None (completed)		

Page 1 of 1

Groundwater Quality Data Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

	Site K Cleenur		cis-1,2-Dichloroethene	al DCI le trans-1,2-Dichloroethene	06 Trichloroethene
	Site K Cleanup		· · · · · · · · · · · · · · · · · · ·	-	
Location	Date	Dup	µg/L	μg/L	μg/L
03U621	6/28/2018		< 1.0	< 1.0	< 1.0
03U621	6/28/2018	D	< 1.0	< 1.0	< 1.0
01U128	7/2/2018		< 1.0	< 1.0	< 1.0
01U603	7/2/2018		8.1	0.65 JP	5.1
01U615	7/2/2018		1400	110	1500
01U615	7/2/2018	D	1400	110	1400
01U617	7/2/2018		4.2	0.38 JP	< 1.0
01U618	7/2/2018		1.7	0.38 JP	2.0
01U621	7/2/2018		< 1.0	< 1.0	< 1.0
K04-MW (482083)	7/2/2018		< 1.0	< 1.0	0.39 JP

Notes:

- ⁽¹⁾ Cleanup levels for Site K are from the OU2 ROD. Shading indicates exceedence of the cleanup level.
- JP Result is qualified as estimated since the detection is below the laboratory quantitation limit.

Table 9-3

Groundwater Elevation Monitoring Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

	Groundwater Elevation	Groundwater Elevation	Groundwater Elevation		
Well ID	(June 2017)	(Historical Maximum)	(June 2018)		
01U047	Abandoned	875.75	Abandoned		
01U048	875.50	876.61	874.20		
01U052	876.26	876.64	875.55		
01U065	Abandoned	874.91	Abandoned		
01U128	876.23	877.07	875.22		
01U601	Abandoned	886.65	Abandoned		
01U602	Abandoned	886.37	Abandoned		
01U603	879.81	882.86	878.26		
01U604	Abandoned	879.79	Abandoned		
01U605	Abandoned	879.61	Abandoned		
01U607	885.81	887.56	Damaged		
01U608	Abandoned	888.06	Abandoned		
01U609	Abandoned	886.83	Abandoned		
01U611	Abandoned	887.16	Abandoned		
01U612	880.04	884.70	879.30		
01U613	Abandoned	886.15	Abandoned		
01U615	880.96	883.71	879.12		
01U616	Abandoned	882.75	Abandoned		
01U617	879.11	883.22	877.62		
01U618	882.70	885.58	881.71		
01U619	Abandoned	886.60	Abandoned		
01U620	Abandoned	881.93	Abandoned		
01U621	880.15	883.87	878.96		
01U624A	Abandoned	881.66	Abandoned		
01U624B	Abandoned	881.63	Abandoned		
01U624C	Abandoned	881.64	Abandoned		
01U624D	Abandoned	881.64	Abandoned		
01U625A	879.92	883.95	878.42		
01U625B	879.51	883.90	878.38		
01U625C	Obstructed	887.91	Obstructed		
01U625D	879.87	883.91	878.37		
01U626A	879.53	882.77	878.15		
01U626B	879.30	883.50	877.78		
01U626C	879.33	883.58	877.83		
01U626D	879.39	883.61	877.92		
01U627A	880.24	882.67	879.06		
01U627B	879.45	883.57	878.02		
01U627C	879.38	883.56	877.92		
01U627D	879.39	883.57	877.93		
01U628A	Abandoned	880.39	Abandoned		
01U628B	Abandoned	880.34	Abandoned		

Table 9-3

Groundwater Elevation Monitoring Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

Well ID	Groundwater Elevation (June 2017)	Groundwater Elevation (Historical Maximum)	Groundwater Elevation (June 2018)
01U628C	Abandoned	880.25	Abandoned
01U628D	Abandoned	880.25	Abandoned
482085 (K01MW)	Abandoned	887.09	Abandoned
482084 (K02MW)	Abandoned	887.41	Abandoned
482083 (K04MW)	881.96	885.38	881.16
03U621	859.12	856.63	861.47

Treatment System Concentrations (Organics) Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

			1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Trichloroethene	Vinyl chloride
	Effluent Lim	it ⁽¹⁾		7.0	3.8	70	100	10	0.18
Location	Date		µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
Effluent	12/6/2017		< 1.0	< 1.0	< 1.0	7.3	< 1.0	1.1	< 1.0
Effluent	12/6/2017	D	< 1.0	< 1.0	< 1.0	7.3	< 1.0	1.1	< 1.0
Effluent	3/1/2018		< 1.0	< 1.0	< 1.0	11	0.74 JP	0.78 JP	< 1.0
Effluent	3/1/2018	D	< 1.0	< 1.0	< 1.0	11	0.71 JP	0.73 JP	< 1.0
Effluent	6/11/2018		< 1.0	< 1.0	< 1.0	1.8	< 1.0	0.33 JP	< 1.0
Effluent	6/11/2018	D	< 1.0	< 1.0	< 1.0	1.7	< 1.0	0.34 JP	< 1.0
Effluent	9/5/2018		< 1.0	< 1.0	< 1.0	2.3	< 1.0	0.39 JP	< 1.0
Effluent	9/5/2018	D	< 1.0	< 1.0	< 1.0	2.3	< 1.0	0.42 JP	< 1.0
Influent	12/6/2017		< 1.0	0.52 JP	< 1.0	200	25	66	2.7
Influent	3/1/2018		< 1.0	0.52 JP	< 1.0	180	26	33	2.2
Influent	6/11/2018		< 1.0	< 1.0	< 1.0	98	16	35	1.2
Influent	9/5/2018		< 1.0	0.34 JP	< 1.0	120	15	41	1.2

Notes:

⁽¹⁾ Substantive Requirement Document Concentration Limit, Maximum Daily Effluent Concentration

D - Field Duplicate

JP - Result is qualified as estimated since the detection is below the laboratory quantitation limit

Treatment System Concentrations (Inorganics) Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

			Copper	Cyanide	Lead	Mercury	Silver	Zinc	Total Phosphorus
	Effluent Li	mit ⁽¹⁾	21	17	106	0.20	3.4	134	1.0
Location	Date		µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L
Effluent	12/6/2017		4.7	< 10	< 1.0	< 0.10	< 1.0	8.8	0.59
Effluent	3/1/2018		1.5 JP	< 10	< 1.0	< 0.20	< 1.0	6.8	0.26 JP
Effluent	6/11/2018		3.9	< 10	< 1.0	< 0.10	< 1.0	6.0	< 0.50
Effluent	9/5/2018		6.6	< 10	< 1.0	< 0.10	< 1.0	7.8	0.27 JP

Notes:

⁽¹⁾ Substantive Requirement Document Concentration Limit, Maximum Daily Effluent Concentration.

JP - Result is qualified as estimated since the detection is below the laboratory quantitation limit.

Summary Of Monthly VOC Removal Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

	Total Monthly Flow	Total VOC Influent	Total VOC Effluent	Total VOCs Treated	Total VOCs Remaining	Total VOC Mass Removed
Month	(gallons)	(µg/L)	(µg/L)	(lbs)	(lbs)	(Ibs)
Cumulative as of September 30, 2017						381.1
October ⁽¹⁾	438,637	294	8.40	1.08	0.03	1.05
November ⁽¹⁾	372,885	294	8.40	0.92	0.03	0.89
December	310,886	294	8.40	0.76	0.02	0.74
January ⁽¹⁾	282,314	242	12.48	0.57	0.03	0.54
February ⁽¹⁾	231,884	242	12.48	0.47	0.02	0.44
March	306,388	242	12.48	0.62	0.03	0.59
April ⁽¹⁾	459,751	150	2.09	0.58	0.01	0.57
May ⁽¹⁾	456,236	150	2.09	0.57	0.01	0.56
June	462,120	150	2.09	0.58	0.01	0.57
July ⁽¹⁾	459,441	178	2.09	0.68	0.01	0.67
August ⁽¹⁾	441,660	178	2.09	0.65	0.01	0.65
September	445,770	178	2.71	0.66	0.01	0.65
Total - FY 2018	4,667,972					7.92
Cumulative To Date						389.0

Notes:

⁽¹⁾ Influent and Effluent VOC concentrations from the quarterly VOC samples collected on 12/06/2017, 03/01/2018, 06/11/2018 and 09/05/2018.

1,4-Dioxane Groundwater Sampling Results Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

			1,4-Dioxane
Screer	ning Criteria (HRL)		1.0
Location	Date		μg/L
03U621	6/28/2018		8.3
03U621	6/28/2018	D	8.4

Notes:

HRL Health Risk Limit (Minnesota Department of Health). Shading indicates exceedence of the HRL.

Table 10-1 Summary of Building 102 Shallow Groundwater Monitoring Requirements FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Rem	Remedy Component		Monitoring Requirements	Implementing Party	Documents Containing the Monitoring Plan
#1:	Monitored Natural Attenuation (abiotic degradation)	a.	Outlined below		
#2:	Groundwater Monitoring	a.	Outlined below		
#3:	Land Use Controls to Restrict Well Installation and to Protect the Remedy Infrastructure	a.	None.		
OR:	Overall Remedy (Attainment of Cleanup Goals)	a.	Groundwater quality data throughout the Building 102 plume to evaluate attainment and to verify that groundwater reaching Rice Creek does not exceed state surface water standards.	Army	Building 102 Monitoring Plan in the Annual Performance Report

Table 10-2 Building 102 Groundwater Quality Data FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

a joint venture

Date	Trichloroethene (µg/L)	L Chloroethene		1,1-Dichloroethene (µg/L)	Vinyl Chloride (μg/L)	Vinyl Chloride ^c (μg/L)
vel ^a	5		70	6	0.18	0.18
		1				
7/25/18	5.8	< 0.07 U	5.3	< 1.0 U	< 1.0 U	NA
7/27/18	< 1.0 U	< 0.07 U	16	< 1.0 U	< 1.0 U	0.26
7/25/18	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
7/27/18	10	< 0.07 U	8.1	< 1.0 U	< 1.0 U	NA
7/27/18	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	0.075
7/27/18	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	0.089
7/25/18	1.5	< 0.07 U	0.94 J	< 1.0 U	< 1.0 U	NA
7/25/18	1.2	< 0.07 U	2.1	< 1.0 U	< 1.0 U	NA
7/25/18	38	< 0.07 U	15	< 1.0 U	< 1.0 U	NA
7/27/18	< 1.0 U	< 0.07 U	0.65 J	< 1.0 U	< 1.0 U	< 0.050 U
7/25/18	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
7/27/18	< 1.0 U	< 0.07 U	< 1.0 U	< 1.0 U	< 1.0 U	NA
	vel ^a 7/25/18 7/27/18 7/25/18 7/27/18 7/27/18 7/27/18 7/25/18 7/25/18 7/25/18 7/25/18 7/25/18	Date (μg/L) /el ^a 5 //25/18 5.8 7/25/18 <1.0 U	Date(μg/L)(μg/L)/el a5117/25/185.8< 0.07 U	DateInchloroethene ($\mu g/L$)1,4 DioXane ($\mu g/L$)Dichloroethene ($\mu g/L$)/el a57017/25/185.8< 0.07 U	DateTrichloroethene (µg/L)1,4 DioXane (µg/L)Dichloroethene (µg/L)1,1-Dichloroethene (µg/L) γel^a 570617/25/185.8< 0.07 U	DateInclusion (µg/L)I,4 Dioxane (µg/L)Dichloroethene (µg/L)I,1-Dichloroethene (µg/L)Vinyl Chloride (µg/L)/el a57060.1817/25/185.8< 0.07 U

Footnotes:

a. The cleanup level for Building 102 Groundwater is from page 2-13 of OU2 Record of Decision Amendment #4. Gray shading indicates exceedance of the cleanup level.

b. No Building 102 cleanup level has been established for 1,4-dioxane. For reference, the Minnesota Department of Health (MDH) Health Risk Limit (HRL) for 1,4-dioxane is 1 µg/L. Gray shading indicates exceedance of the HRL.

is T μ g/L. Gray shading indicates exceedance of the HRL.

c. This analysis of vinyl chloride is by Method 8260C-SIM to obtain a lower reporting limit for vinyl chloride.

Acronyms and Abbreviations:

--- = no relevant cleanup level or HRL for this compound

< X.X = analyte was not detected above the indicated Method Detection Limit (MDL)

Dup = duplicate

J = reported value is between the MDL and the Reporting Limit

NA = sample not analyzed for this compound

OU = Operable Unit

µg/L = micrograms per liter

Groundwater Cleanup Levels TGRS, OU2 Arden Hills, Minnesota

Substance	Expected Level in Discharge (ppb)	Operable Unit 2 Rod Requirements (ppb)
Volatile Organic Compounds (VOCs) cis-1,2-Dichloroethene plus		
trans-1,2-Dichloroethene	<1.0	70
1,1-Dichloroethene	<1.0	6.0
1,1,1-Trichloroethane	<1.0	200
1,2-Dichloroethane	<1.0	4.0
Trichloroethene	<5.0	5.0
1,1-Dichloroethane	<1.0	70
Tetrachloroethene	<1.0	5.0

Extraction Well Water Pumped Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

					Volume	of Water Pumpe	ed (gallons)						
	B1	В3	B4	B5	B6	B8	В9	B11	B13	SC1	SC2	SC5	Total
October 2017	9,335,900	9,732,400	9,350,300	11,320,300	10,780,500	8,552,200	12,031,400	0	3,000,500	952,600	99,800	5,179,100	80,335,000
(gpm)	209	218	209	254	241	192	270	0	67	21	2	116	1,800
November 2017	7,308,800	9,078,900	8,859,900	10,085,500	9,216,300	7,202,200	12,370,800	0	3,990,700	903,300	1,609,100	4,904,700	75,530,200
(gpm)	169	210	205	233	213	167	286	0	92	21	37	114	1,748
December 2017	8,831,600	9,719,000	9,526,800	9,460,700	10,580,400	7,222,800	12,953,200	0	5,617,900	983,300	2,166,200	5,027,500	82,089,400
(gpm)	198	218	214	212	237	162	290	0	126	22	49	113	1,839
January 2018	9,169,000	9,753,300	9,659,900	8,686,500	10,456,700	6,889,200	13,111,400	0	5,625,200	997,600	1,289,900	5,056,900	80,695,600
(gpm)	205	218	216	195	234	154	294	0	126	22	29	113	1,808
February 2018	8,048,600	8,537,800	8,259,900	8,296,600	9,470,600	6,087,600	11,630,200	0	5,104,500	853,300	815,000	4,536,400	71,640,500
(gpm)	200	212	205	206	235	151	288	0	127	21	20	113	1,777
March 2018	8,821,700	10,195,000	9,374,500	8,326,300	9,729,700	6,813,200	12,023,800	0	5,082,700	988,400	1,519,900	4,958,800	77,834,000
(gpm)	198	228	210	187	218	153	269	0	114	22	34	111	1,744
April 2018	8,425,900	9,633,100	8,205,800	7,580,800	8,843,700	6,915,000	12,474,200	0	4,053,500	959,100	1,200,400	4,411,600	72,703,100
(gpm)	195	223	190	175	205	160	289	0	94	22	28	102	1,683
May 2018	8,162,200	11,471,700	7,478,900	7,454,900	9,611,500	8,239,500	11,676,000	0	4,604,700	917,900	791,800	4,350,800	74,759,900
(gpm)	183	257	168	167	215	185	262	0	103	21	18	97	1,675
June 2018	7,652,100	12,006,900	7,303,800	7,323,300	9,822,900	8,570,500	11,877,600	0	4,838,800	939,700	443,600	4,387,900	75,167,100
(gpm)	177	278	169	170	227	198	275	0	112	22	10	102	1,740
July 2018	8,802,800	11,749,200	6,573,600	8,164,900	10,330,500	8,733,500	12,226,600	0	5,044,400	952,900	0	4,575,700	77,154,100
(gpm)	197	263	147	183	231	196	274	0	113	21	0	103	1,728
August 2018	10,833,900	10,159,700	7,238,800	12,403,600	9,906,900	8,162,400	10,650,700	0	4,388,500	892,300	0	4,507,500	79,144,300
(gpm)	243	228	162	278	222	183	239	0	98	20	0	101	1,773
September 2018	10,634,900	9,483,000	5,561,300	10,859,400	8,227,800	6,674,900	8,672,200	0	4,911,200	839,500	0	4,520,100	70,384,300
(gpm)	246	220	129	251	190	155	201	0	114	19	0	105	1,629
Total FY 2018	106,027,400	121,520,000	97,393,500	109,962,800	116,977,500	90,063,000	141,698,100	0	56,262,600	11,179,900	9,935,700	56,417,000	917,437,500
Operational Minimum													
(gpm)		170	195	195	210	135	275	80	110	20	30	100	1,745
					B1, B11, B13		B4, B5, B6	I	B4, B5, B6, B8, B9	9	Total System		
FY18 Average Flow R	ate (gpm)				309		617		1,058		1,746		
	(9٣)				000		011		.,		.,, 10		

415

600

1,010

MOS Operational Minimum (gpm)

1,745

Treatment Center Water Meter Totals Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

	Volume of Water Pumped (gallons)													
	Extraction Wells	Meter 1	Meter 2	Total Meters 1 & 2	Meter 3	Meter 4	Total Meters 3 & 4	Meter 5	Meter 6	Total Meters 5 & 6				
October 2017	80,335,000	0	0	0	54,000	13,507,000	13,561,000	0	0	0				
November 2017	75,530,200	0	0	0	7,000	68,792,000	68,799,000	0	0	0				
December 2017	82,089,400	0	0	0	2,000	75,966,000	75,968,000	0	0	0				
January 2018	80,695,600	0	0	0	5,000	73,617,000	73,622,000	0	0	0				
February 2018	71,640,500	0	0	0	0	65,084,000	65,084,000	0	0	0				
March 2018	77,834,000	0	0	0	0	69,947,000	69,947,000	0	0	0				
April 2018	72,703,100	0	0	0	2,000	68,245,000	68,247,000	0	0	0				
May 2017	74,759,900	0	0	0	5,000	71,015,000	71,020,000	0	0	0				
June 2018	75,167,100	0	0	0	5,000	41,094,000	41,099,000	0	0	0				
July 2018	77,154,100	0	0	0	1,000	23,838,000	23,839,000	0	0	0				
August 2018	79,144,300	0	0	0	56,000	6,736,000	6,792,000	0	0	0				
September 2018	70,384,300	0	0	0	6,000	4,105,000	4,111,000	0	0	0				
Total FY 2018	917,437,500	0	0	0	143,000	581,946,000	582,089,000	0	0	0				

Treatment Center Water Meter Totals Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

				Volume of	Water Pumped	(gallons)				
	Extraction			Total			Total			Total
	Wells	Meter 1	Meter 2	Meters 1 & 2	Meter 3	Meter 4	Meters 3 & 4	Meter 5	Meter 6	Meters 5 & 6
FY 1989	1,033,353,676	501,826,000	560,836,000	1,062,662,000	383,736,000	587,596,000	971,332,000	493,681,000	582,955,000	1,076,636,000
FY 1990	1,008,415,750	493,915,000	526,417,000	1,020,332,000	371,391,000	588,642,000	960,033,000	487,946,000	543,726,000	1,031,672,000
FY 1991	1,382,327,590	666,166,000	708,313,000	1,374,479,000	523,702,000	789,947,000	1,313,649,000	601,307,000	649,621,000	1,250,928,000
FY 1992	1,401,346,600	68,289,000	724,328,000	1,407,227,000	557,169,000	772,509,000	1,329,678,000	767,707,000	677,735,000	1,445,442,000
FY 1993	1,388,206,172	666,814,000	725,341,000	1,392,155,000	504,027,000	651,149,000	1,155,176,000	729,078,000	762,791,000	1,491,869,000
FY 1994	1,245,663,275	660,700,000	659,953,000	1,320,653,000	457,210,000	715,668,000	1,172,878,000	653,913,000	550,131,000	1,204,044,000
FY 1995	1,369,361,500	706,114,000	683,982,000	1,390,096,000	500,275,000	739,744,000	1,240,019,000	495,616,000	274,507,000	770,123,000
FY 1996	1,341,763,220	734,443,000	629,327,000	1,363,770,000	503,518,000	754,399,000	1,257,917,000	4,000	600,035,000	600,039,000
FY 1997	1,213,035,110	688,312,000	568,804,600	1,257,116,600	538,625,000	586,515,000	1,125,140,000	13,000	578,900,000	578,913,000
FY 1998	1,196,007,900	624,784,000	540,353,000	1,220,604,000	511,065,000	603,871,000	1,114,936,000	58,000	178,076,000	178,134,000
FY 1999	1,158,224,870	623,500,000	496,773,200	1,177,206,200	398,620,000	718,384,000	1,117,004,000	26,000	17,000	43,000
FY 2000	1,148,448,350	635,724,000	489,669,000	1,183,258,000	389,709,000	663,807,000	1,053,516,000	0	0	0
FY 2001	1,113,163,360	614,341,000	443,167,000	1,113,164,000	318,517,000	718,661,000	1,037,178,000	0	0	0
FY 2002	917,318,879	491,082,800	434,959,700	926,042,500	225,460,000	650,839,000	876,299,000	0	0	0
FY 2003	904,295,450	545,281,000	345,993,000	891,274,000	125,965,000	750,518,000	876,483,000	0	0	0
FY 2004	908,718,760	518,391,900	376,889,660	895,281,560	216,177,000	680,633,000	896,810,000	0	0	0
FY 2005	895,339,710	520,073,000	363,275,000	883,348,000	224,823,000	658,405,000	883,228,000	0	0	0
FY 2006	929,715,590	534,305,000	377,499,000	911,804,000	266,299,000	669,900,000	936,199,000	0	0	0
FY 2007	945,317,300	447,901,000	487,701,000	935,602,000	281,061,000	833,161,000	1,114,222,000	0	0	0
FY 2008	943,318,161	424,289,615	512,634,095	936,923,709	217,134,430	778,717,620	995,852,050	0	0	0
FY 2009	925,232,745	357,698,000	552,505,000	910,203,000	173,004,000	795,057,000	968,061,000	0	0	0
FY 2010	933,789,205	368,260,000	556,160,000	924,420,000	61,957,000	894,152,000	956,109,000	0	0	0
FY 2011	952,379,000	183,460,000	268,747,000	452,207,000	15,479,000	890,850,000	906,329,000	0	0	0
FY 2012	964,996,900	0	0	0	695,000	848,465,000	849,160,000	0	0	0
FY 2013	924,550,600	0	0	0	5,503,000	883,772,000	891,338,000	0	0	0
FY 2014	937,934,854	0	0	0	3,956,000	895,176,000	899,132,000	0	0	0
FY 2015	920,197,600	0	0	0	8,122,000	724,325,000	732,447,000	0	0	0
FY 2016	907,577,164	0	0	0	7,145,000	690,956,000	698,101,000	0	0	0
FY 2017	929,926,100	0	0	0	2,349,000	525,834,000	528,183,000	0	0	0
FY 2018	917,437,500	0	0	0	143,000	581,946,000	582,089,000	0	0	0

Pumphouse Down Time Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Table 12.4

Well Name	FY18 Down Time (Days)	FY17 Down Time (Days)	FY16 Down Time (Days)	FY15 Down Time (Days)	FY14 Down Time (Days)
B1	10.9	3.3	4.2	2.7	3.4
B2	(1)	(1)	(1)	(1)	(1)
B3	3.6	3.7	9.7	5.4	3.0
B4	13.8	3.3	6.5	10.2	9.2
B5	32.0	4.0	9.1	8.7	2.0
B6	17.9	8.7	7.8	2.4	9.6
B7	(1)	(1)	(1)	(1)	(1)
B8	8.1	7.1	8.9	8.5	2.4
B9	14.8	11.2	21.7	9.5	6.8
B10	(1)	(1)	(1)	(1)	(1)
B11	(1)	(1)	(1)	(1)	(1)
B12	(1)	(1)	(1)	(1)	(1)
B13	18.8	4.3	3.9	4.5	2.9
SC1	6.2	3.9	10.7	2.6	17.0
SC2	25.2	3.7	81.3	4.4	4.4
SC3	(1)	(1)	(1)	(1)	(1)
SC4	(1)	(1)	(1)	(1)	(1)
SC5	4.3	20.2	11.7	6.6	9.4

Note:

⁽¹⁾ The extraction well was not in operation during the fiscal year.
 ⁽²⁾ The extraction well was in operation for only part of the fiscal year.

Down Time By Category Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Category	Down Time (Days)
Pumphouse Component	7.7
Treatment Center Component	0.5
Electrical Service	4.9
Miscellaneous	0.2
Preventive Maintenance	0.5
System Modification	0.4
Forcemain	0.0
Total System Equivalent	14.2

Anticipated Down Time for Fiscal Year 2019

Pumphouse Component	4.0
Treatment Center Component	1.5
Electrical Service	2.0
Miscellaneous	1.0
Preventive Maintenance	1.0
System Modification	0.5
Forcemain	1.0

VOC Mass Loading Summary Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Well	Percent Contribution to VOC Mass Removal	FY 2018 Total Pounds VOCs Mass Removed		
B1	2.9%	55.8		
B2 ¹	0.0%	0.00		
B3	0.2%	3.34		
B4	3.5%	67.8		
B5	3.5%	66.5		
B6	1.3%	24.7		
B7 ¹	0.0%	0.00		
B8	0.3%	5.88		
B9	2.1%	40.0		
B10 ¹	0.0%	0.00		
B11 ¹	0.0%	0.00		
B12 ¹	0.0%	0.00		
B13	3.2%	61.9		
SC1	9.4%	180		
SC2	0.2%	4.46		
SC3 ¹	0.0%	0.00		
SC4 ¹	0.0%	0.00		
SC5	73.3%	1,401		
Fiscal Year 2018 Total (Ibs) Daily Average (Ibs/day)		1,911 5.2		

Notes:

¹ Extraction well was not in operation during the fiscal year.

VOC Mass Loading Summary Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Historical Total

Fiscal Year

Pounds VOC Mass Removed

2018		1,911
2017		1,988
2016		1,731
2015		1,748
2014		2,020
2013		2,082
2012		1,801
2011		1,834
2010		2,096
2009		2,167
2008		2,292
2007		2,507
2006		2,552
2005		2,663
2004		3,291
2003	(First year of reconfigured system)	3,041
2002		2,852
2001		3,418
2000		4,499
1999		4,878
1998		6,132
1997		6,210
1996		10,655
1995		13,355
1994		15,070
1993		20,165
1992		24,527
1991		26,760
1990		18,005
1989	(First year of full scale system)	19,510
1988		4,800
1987		2,100
Total		218,660

GHD 11187055

VOC Concentrations in TGRS Extraction Wells Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Location	Alias	Date	Dup	Β 1,1,1-Trichloroethane	that bichloroethane	бт 1,1-Dichloroethene	бт 1,2-Dichloroethane	白 「」 「」 「」 「」 」 「」 」 「」 」 」 」 」 」 」 」 」	더 고 고 고 다 고 다 고 다 고 다 고 다 고 다 고 다 고 다 고	Trichloroethene T
			Dup							
03F302	B1	12/7/2017		3.9	0.64 JP	0.91 JP	< 1.0	4.3	1.3	80
03F302	B1	6/8/2018		2.5	0.43 JP	0.65 JP	< 1.0	2.9	1.0	46
03F302	B1	6/8/2018	D	2.4	0.42 JP	0.63 JP	< 1.0	2.7	1.0	45
03F303	B2	6/15/2018		< 1.0	< 1.0	0.80 JP	0.36 JP	1.3	0.71 JP	23
03F304	B3	12/7/2017		< 1.0	0.30 JP	0.37 JP	< 1.0	< 1.0	< 1.0	3.5
03F304	B3	6/8/2018		< 1.0	0.32 JP	0.45 JP	< 1.0	< 1.0	< 1.0	3.8
03F305	B4	12/7/2017		6.2	3.0	2.9	< 1.0	2.0	< 1.0	92
03F305	B4	6/8/2018		4.7	2.2	2.0	< 1.0	1.5	< 1.0	65
03F306	B5	12/7/2017		2.6	2.3	2.2	< 1.0	0.85 JP	5.5	79
03F306	B5	12/7/2017	D	2.6	2.4	2.4	< 1.0	0.77 JP	5.4	79
03F306	B5	6/11/2018		2.1	1.9	1.9	< 1.0	0.64 JP	3.5 JL 74.6	63
03F307	B6	12/7/2017		0.57 JP	0.31 JP	0.51 JP	< 1.0	< 1.0	< 1.0	31
03F307	B6	6/8/2018		0.45 JP	< 1.0	0.41 JP	< 1.0	< 1.0	< 1.0	25
03F308	B7	6/15/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.8
03F312	B11	6/15/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03F319	B13	12/7/2017		3.2	1.2	1.1	< 1.0	7.2	0.50 JP	160
03F319	B13	12/7/2017	D	3.1	1.2	1.0	< 1.0	7.2	0.50 JP	160
03F319	B13	6/8/2018		3.8	0.86 JP	0.85 JP	< 1.0	6.2	0.45 JP	110
03U301	SC1	12/7/2017		28	5.1	5.4	< 5.0	160	< 5.0	2500
03U301	SC1	6/8/2018		27	5.2	4.9	< 4.0	140	< 4.0	1400
03U314	SC2	12/7/2017		17	1.6	1.0	< 1.0	1.9	< 1.0	46
03U314	SC2	6/8/2018		5.7	1.1	0.55 JP	< 1.0	1.3	< 1.0	28
03U315	SC3	6/15/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.30 JP
03U316	SC4	6/15/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.2
03U317	SC5	12/7/2017		760	20	37	1.5 JP	7.0	4.5 JP	2900
03U317	SC5	6/8/2018		600	15	28	< 5.0	6.4	4.0 JP	2200
PJ#309	B8	12/7/2017		0.40 JP	0.35 JP	0.42 JP	< 1.0	< 1.0	< 1.0	9.6
PJ#309	B8	6/8/2018		0.32 JP	0.31 JP	0.36 JP	< 1.0	< 1.0	< 1.0	7.9
PJ#310	B9	12/7/2017		1.5	1.6	1.9	< 1.0	0.67 JP	< 1.0	37
PJ#310	B9	6/11/2018		1.1	1.3	1.5	< 1.0	0.56 JP	< 1.0 JL 74.6	29
PJ#311	B10	6/15/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PJ#313	B12	6/15/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
PJ#313	B12	6/15/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

D - Field Duplicate

JP - Result is qualified as estimated since the detection is below the laboratory reporting limit

JMS - Result is qualified as estimated based on outlying matrix spike sample recovery (# following JMS is actual % recovery)

			1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene
	S Cleanup Le		200	70	6.0	4.0	70	5.0	5.0
Location	Date	Dup	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L
03L002	6/14/2018		0.38 JP	0.36 JP	0.59 JP	< 1.0	< 1.0	< 1.0	13
03L007	6/26/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03L014	6/19/2018		100	3.6	3.5	< 1.0	2.5	< 1.0	150
03L017	6/19/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03L017	6/19/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03L018	6/21/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03L020	6/18/2018		0.30 JP	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.2
03L021	6/14/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2
03L077	6/7/2018		1.3	< 1.0	0.86 JP	< 1.0	< 1.0	< 1.0	24
03L078	6/13/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03L079	6/14/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.74 JP
03L802	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JMS 71.6	1.5
03L806	6/22/2018		0.97 JP	< 1.0	0.53 JP	< 1.0	< 1.0	< 1.0	38
03L809	6/26/2018		2.4	1.8	2.2	< 1.0	1.1	< 1.0	120
03L833	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.8
03L833	6/25/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7
03M002	6/14/2018		0.65 JP	1.4	1.4	< 1.0	0.44 JP	< 1.0	20
03M020	6/18/2018		1.5	0.36 JP	0.30 JP	< 1.0	< 1.0	< 1.0	19
03M802	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.9
03M806	6/22/2018		0.51 JP	46	25	0.53 JP	7.7	< 1.0	330
03U002	6/19/2018		1.6	0.38 JP	0.57 JP	< 1.0	0.45 JP	< 1.0	16
03U003	6/13/2018		3.8	0.80 JP	1.1	< 1.0	2.1	< 1.0	61
03U003	6/13/2018	D	3.7	0.84 JP	1.0	< 1.0	2.1	< 1.0	61
03U005	6/26/2018		< 1.0	< 1.0	< 1.0	< 1.0	0.36 JP	< 1.0	< 1.0

			1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene
			l,1-Tr	I-Dicl	I-Dicl	2-Dicl	s-1,2-	trach	ichloi
		(1)						Le	Ë H
	S Cleanup Le		200	70	6.0	4.0	70	5.0	5.0
Location	Date	Dup	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	μg/L
03U007	6/26/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U009	6/19/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U014	6/19/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U017	6/19/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.96 JP
03U018	6/21/2018		21	1.7	2.3	< 1.0	7.3	< 1.0	49
03U018	6/21/2018	D	21	1.7	2.3	< 1.0	7.6	< 1.0	50
03U020	6/18/2018		13	1.2	2.2	< 1.0	0.93 JP	< 1.0	50
03U021	6/14/2018		14	12	9.3	< 1.0	9.2	< 1.0	230
03U027	6/19/2018		0.38 JP	< 1.0	< 1.0	< 1.0	0.46 JP	< 1.0	7.1
03U028	6/13/2018		0.38 JP	< 1.0	< 1.0	< 1.0	1.1	< 1.0	21
03U029	6/13/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.1
03U030	6/13/2018		3.8	0.85 JP	1.1	< 1.0	2.1	< 1.0	61
03U032	6/22/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U077	6/7/2018		1.2	< 1.0	< 1.0	< 1.0	< 1.0	0.78 JP	27
03U078	6/13/2018		1.4	< 1.0	0.71 JP	< 1.0	1.1	11	46
03U079	6/14/2018		5.6	0.39 JP	1.1	< 1.0	2.0	< 1.0	64
03U092	6/21/2018		0.40 JP	< 1.0	< 1.0	< 1.0	0.90 JP	< 1.0	8.5
03U093	6/21/2018		50	0.31 JP	3.6	< 1.0	1.7	< 1.0	130
03U094	6/21/2018		200 JMS 74.5	8.6	4.3	< 1.0	13	< 1.0	200
03U096	6/21/2018		5.3	0.58 JP	0.92 JP	< 1.0	< 1.0	< 1.0	19
03U099	6/21/2018		0.56 JP	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.5
03U114	6/21/2018		0.68 JP	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.0
03U659	6/13/2018		93	10	11	< 1.0	140	< 1.0	730
03U671	6/13/2018		1.6	< 1.0	0.62 JP	< 1.0	< 1.0	16	45

			roethane	ethane	ethene	ethane	oroethene	thene	ene
			1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene
TGR	S Cleanup Le	evel ⁽¹⁾	200	70	6.0	4.0	70	5.0	5.0
Location	Date	Dup	μg/L	µg/L	μg/L	μg/L	µg/L	μg/L	μg/L
03U677	6/26/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U701	6/11/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	0.69 JP
03U702	6/11/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	0.44 JP
03U703	6/13/2018		0.63 JP	< 1.0	< 1.0	< 1.0	< 1.0	2.8	6.6
03U708	6/12/2018		1.3	< 1.0	0.31 JP	< 1.0	< 1.0	2.7	20
03U709	6/12/2018		2.4	0.41 JP	0.74 JP	< 1.0	0.69 JP	< 1.0	20
03U710	6/19/2018		3.7	< 1.0	0.71 JP	< 1.0	0.98 JP	< 1.0	43
03U711	6/25/2018		3.2	0.80 JP	1.3	< 1.0	0.52 JP	0.56 JP	31
03U715	6/20/2018		6.7	< 1.0	0.79 JP	< 1.0	< 1.0	< 1.0	21
03U801	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	0.35 JP	< 1.0	16
03U801	6/25/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	0.40 JP	< 1.0	17
03U803	6/26/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U804	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03U805	6/26/2018		< 1.0	10	8.4	< 1.0	3.7	1.3	47
03U805	6/26/2018	D	< 1.0	10	8.6	< 1.0	3.7	1.3	49
03U806	6/22/2018		< 1.0	0.56 JP	0.38 JP	< 1.0	< 1.0	0.54 JP	35
04J077	6/7/2018		0.91 JP	2.0	2.0	< 1.0	0.79 JP	< 1.0	60
04J077	6/7/2018	D	0.88 JP	2.0	2.0	< 1.0	0.76 JP	< 1.0	59
04J702	6/11/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	1.1
04J708	6/12/2018		0.78 JP	1.1	0.78 JP	< 1.0	< 1.0	< 1.0	9.7
04J713	6/12/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	< 1.0
04U002	6/14/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.1
04U007	6/26/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U020	6/18/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.4

		.(1)	1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene
TGR Location	S Cleanup Le Date	ovel ^w	200 μg/L	70 μg/L	6.0 μg/L	4.0 μg/L	70 μg/L	5.0 μg/L	5.0 μg/L
04U077	6/7/2018	Dup	1.2	0.55 JP	1.2	< 1.0	0.35 JP	µg/∟ < 1.0	33
04U510	6/19/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U701	6/11/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	2.5
04U702	6/11/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	1.2
04U702	6/11/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	1.1
04U708	6/12/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JMS 73.8	< 1.0
04U709	6/12/2018		0.67 JP	0.40 JP	0.93 JP	< 1.0	< 1.0	< 1.0	16
04U711	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U713	6/12/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 JL 74.6	< 1.0
04U802	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.30 JP
04U806	6/22/2018		0.86 JP	2.0	1.8	< 1.0	0.59 JP	< 1.0	49
04U833	6/25/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.39 JP
PJ#806	6/22/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	12

Notes:

D

⁽¹⁾ Cleanup levels for TGRS are from the OU2 ROD. Shading indicates exceedence of the cleanup level.

- Field Duplicate

JP - Result is qualified as estimated since the detection is below the laboratory reporting limit

JL# - Result is qualified as estimated due to outlying LCS recovery. The following numerical value is the associated %LCS recovery.

JMS# - Result is qualified as estimated due to outlying MS recovery. The following numerical value is the associated % MS recovery.

Summary Of OU2 Deep Groundwater Monitoring Requirements TGRS, OU2 Arden Hills, Minnesota

Remedy Component	Monitoring Requirements	Implementing Party	Documents Containing the Monitoring Plan
#1 Hydraulic Containment and Mass Removal	a. Water levels to draw contour maps showing hydraulic zone of capture	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report
	b. Pumping volumes and rates for comparison to design rates	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report
	c. Influent and extraction well water quality for overall mass removal calculations	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report
#2 Groundwater Treatment	Outlined below		
#3 Treated Water Discharge	 Effluent monitoring to verify attainment of treatment requirements 	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report
#4 Land Use Controls	• None		
#5 Review of New Technologies	• None		
#6 Groundwater Monitoring	a. Water levels to draw contour maps showing hydraulic zone of capture	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report
	 Groundwater quality to verify attainment of clear up goals 	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report
Overall Remedy	a. Groundwater quality to verify attainment of clear up goals	Northrop-Grumman Innovation Systems	Deep groundwater monitoring plan in Annual Report

1,4-Dioxane Concentrations in TGRS and Extraction Wells Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

				1,4-Dioxane
	1.0			
Location	Alias	Date	Dup	μg/L
03F302	B1	6/8/2018		1.4
03F302	B1	6/8/2018	D	1.5
03F303	B2	6/15/2018		0.26
03F304	B3	6/8/2018		5.5
03F305	B4	6/8/2018		23.9
03F306	B5	6/11/2018		11.8
03F307	B6	6/8/2018		10.9
03F308	B7	6/15/2018		12.5
03F312	B11	6/15/2018		0.73
03F319	B13	6/8/2018		4.1
03U301	SC1	6/8/2018		24.8
03U314	SC2	6/8/2018		15.4
03U315	SC3	6/15/2018		9.1
03U316	SC4	6/15/2018		9.3
03U317	SC5	6/8/2018		16
PJ#309	B8	6/8/2018		9.5
PJ#310	B9	6/11/2018		12.4
PJ#311	B10	6/15/2018		12.5
PJ#313	B12	6/15/2018		6.9
PJ#313	B12	6/15/2018	D	6.7
TGRSE		6/11/2018		10
TGRSE		6/11/2018	D	9.9
TGRSI		6/18/2018		11.1

Notes:

- HRL Health Risk Limit (Minnesota Department of Health). Shading indicates exceedence of the HRL
- D Field Duplicate

1,4-Dioxane Concentrations in TGRS and Extraction Wells Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

			1,4-Dioxane
Sc	reening Criteria	(HRL)	
Location	Date	Dup	μg/L
03L002	6/14/2018		13
03L007	6/26/2018		0.043 JP
03L014	6/19/2018		107
03L017	6/19/2018		12
03L017	6/19/2018	D	12.2
03L018	6/21/2018		11.3
03L020	6/18/2018		10
03L021	6/14/2018		9.6
03L077	6/7/2018		13.8
03L078	6/13/2018		3
03L079	6/14/2018		0.73
03L802	6/25/2018		0.26
03L806	6/22/2018		14.2
03L809	6/26/2018		15.7
03L833	6/25/2018		13.2
03L833	6/25/2018	D	12.9
03M002	6/14/2018		14
03M020	6/18/2018		10.8
03M802	6/25/2018		0.13
03M806	6/22/2018		15.4
03U002	6/19/2018		7
03U003	6/13/2018		0.25
03U003	6/13/2018	D	0.22
03U005	6/26/2018		0.055 JP
03U007	6/26/2018		0.042 JP
03U009	6/19/2018		< 0.07
03U014	6/19/2018		10.7
03U017	6/19/2018		11.3
03U018	6/21/2018		0.53
03U018	6/21/2018	D	0.51
03U020	6/18/2018		2.7
03U021	6/14/2018		96

1,4-Dioxane Concentrations in TGRS and Extraction Wells Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

			1,4-Dioxane
Sc	creening Criteria	(HRL)	1.0
Location	Date	Dup	μg/L
03U027	6/19/2018		0.091
03U028	6/13/2018		0.12
03U029	6/13/2018		0.76
03U030	6/13/2018		0.11
03U032	6/22/2018		6.2
03U077	6/7/2018		5.8
03U078	6/13/2018		0.16
03U079	6/14/2018		0.24
03U092	6/21/2018		4.4
03U093	6/21/2018		2.3
03U094	6/21/2018		157
03U096	6/21/2018		6.9
03U099	6/21/2018		< 0.07
03U114	6/21/2018		< 0.07
03U659	6/13/2018		35.9
03U671	6/13/2018		1.4
03U677	6/26/2018		0.32
03U701	6/11/2018		8.7
03U702	6/11/2018		8.8
03U703	6/13/2018		0.067 JP
03U708	6/12/2018		0.29
03U709	6/12/2018		4.3
03U710	6/19/2018		0.18 JMS157
03U711	6/25/2018		3.4
03U715	6/20/2018		8.3
03U801	6/25/2018		0.1
03U801	6/25/2018	D	0.14
03U803	6/26/2018		< 0.070 UB 0.02
03U804	6/25/2018		< 0.07
03U805	6/26/2018		3
03U805	6/26/2018	D	2.8
03U806	6/22/2018		7.7

1,4-Dioxane Concentrations in TGRS and Extraction Wells Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

				1,4-Dioxane
	Scr	eening Criteria	(HRL)	1.0
Location		Date	Dup	μg/L
04J077		6/7/2018		13
04J077		6/7/2018	D	12.5
04J702		6/11/2018		12.7
04J708		6/12/2018		7
04J713		6/18/2018		6
04U002		6/14/2018		12.1
04U020		6/18/2018		9.5
04U077		6/7/2018		12.3
04U510		6/19/2018		< 0.07
04U701		6/11/2018		12
04U702		6/11/2018		12
04U702		6/11/2018	D	11.4
04U708		6/12/2018		7.3
04U709		6/12/2018		12.4
04U711		6/25/2018		7.3
04U713		6/12/2018		11.3
04U802		6/25/2018		0.4
04U806		6/22/2018		13.5
04U833		6/25/2018		13.2
PJ#806		6/22/2018		13.5

Notes:

- HRL Health Risk Limit (Minnesota Department of Health). Shading indicates exceedence of the HRL
- D Field Duplicate
- JP Result is qualified as estimated since the detection is below the laboratory reporting limit
- UB# Result is qualified as non-detect. The following numerical value is the associated blank conentration
- JMS# Result is qualified as estimated due to outlying MS recovery The following numerical value is the associated % MS recovery

Table 13.1

Groundwater Quality Data Fiscal Year 2018 Operable Unit 3

	3 Cleanup Lo	evel ⁽¹⁾	00 1,1,1-Trichloroethane	ତ 1,1,2-Trichloroethane	d 1,1-Dichloroethane	9 1,1-Dichloroethene	6 cis-1,2-Dichloroethene	2.0 2.0
Location	Date	Dup	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
03L673	6/29/2018		< 1.0	< 1.0	0.30 JP	< 1.0	4.1	63
03L848	6/28/2018		< 1.0	< 1.0	< 1.0	< 1.0	0.37 JP	3.3
03L854	6/28/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03L854	6/28/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
03M848	6/28/2018		< 1.0	< 1.0	0.53 JP	0.74 JP	7.3	110
03U673	6/29/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04J866	6/27/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U414	6/27/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U414	6/27/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U673	6/29/2018		< 1.0	< 1.0	< 1.0	< 1.0	0.89 JP	22
04U832	6/28/2018		0.97 JP	< 1.0	3.2	3.6	4.2	59
04U845	6/27/2018		< 1.0	< 1.0	< 1.0	< 1.0	0.41 JP	7.4
04U848	6/28/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.0
04U851	6/27/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
04U854	6/28/2018		< 1.0	< 1.0	< 1.0	< 1.0	0.38 JP	7.2
03L859	6/28/2018		1.2	< 1.0	4.2	7.0	1.1	4.8
04U859	6/28/2018		1.9	< 1.0	2.5	3.2	1.2	25
04U860	6/29/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.43 JP
04U860	6/29/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.35 JP
04U863	6/27/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.93 JP
04U866	6/27/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.33 JP

Notes:

⁽¹⁾Cleanup levels for OU3 are from the OU3 ROD. Shading indicates exceedence of the cleanup level.

D - Field Duplicate

JP - Result is qualified as estimated since the detection is below the laboratory quantitation limit.

Page 1 of 1

Table 13.2

Mann-Kendall Statistical Summary Fiscal Year 2018 Operable Unit 3

	Well	N Kendall S	lumber of Data Points	a Raw Trend	Confidence	Coefficient of Variance	Raw Trend Decision	MAROS Conclusion	TRCLE Concentration 2018
E	Edge of Plu	me Wells							
*	03L673	-12	6	Decreasing	98.19%	0.2258	Definite	Decreasing	63
*	03L848	-11	6	Decreasing	97.20%	0.1632	Definite	Decreasing	3.3
*	04U673	-13	6	Decreasing	99.17%	0.2965	Definite	Decreasing	22
*	04U832	8	6	Increasing	89.81%	0.1021	Stable or No Trend	No Trend	59
*	04U845	-3	6	Decreasing	64.00%	0.3458	Stable or No Trend	Stable	7.4
*	04U848	-9	6	Decreasing	93.20%	0.1961	Probable	Decreasing	3
*	04U854	-9	6	Decreasing	93.20%	0.1777	Probable	Decreasing	7.2
(Center of Pl	ume Wells							
*	03L859	-12	6	Decreasing	98.19%	0.2240	Definite	Decreasing	4.8
*	03M848	-12	6	Decreasing	98.19%	0.1912	Definite	Decreasing	110
*	04U859	-14	6	Decreasing	99.51%	0.2864	Definite	Decreasing	25

Notes:

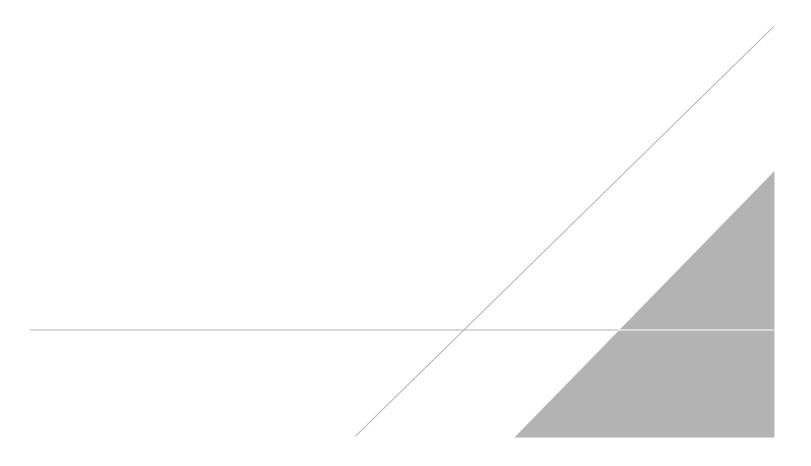
* - Denotes sample results collected in FY 201

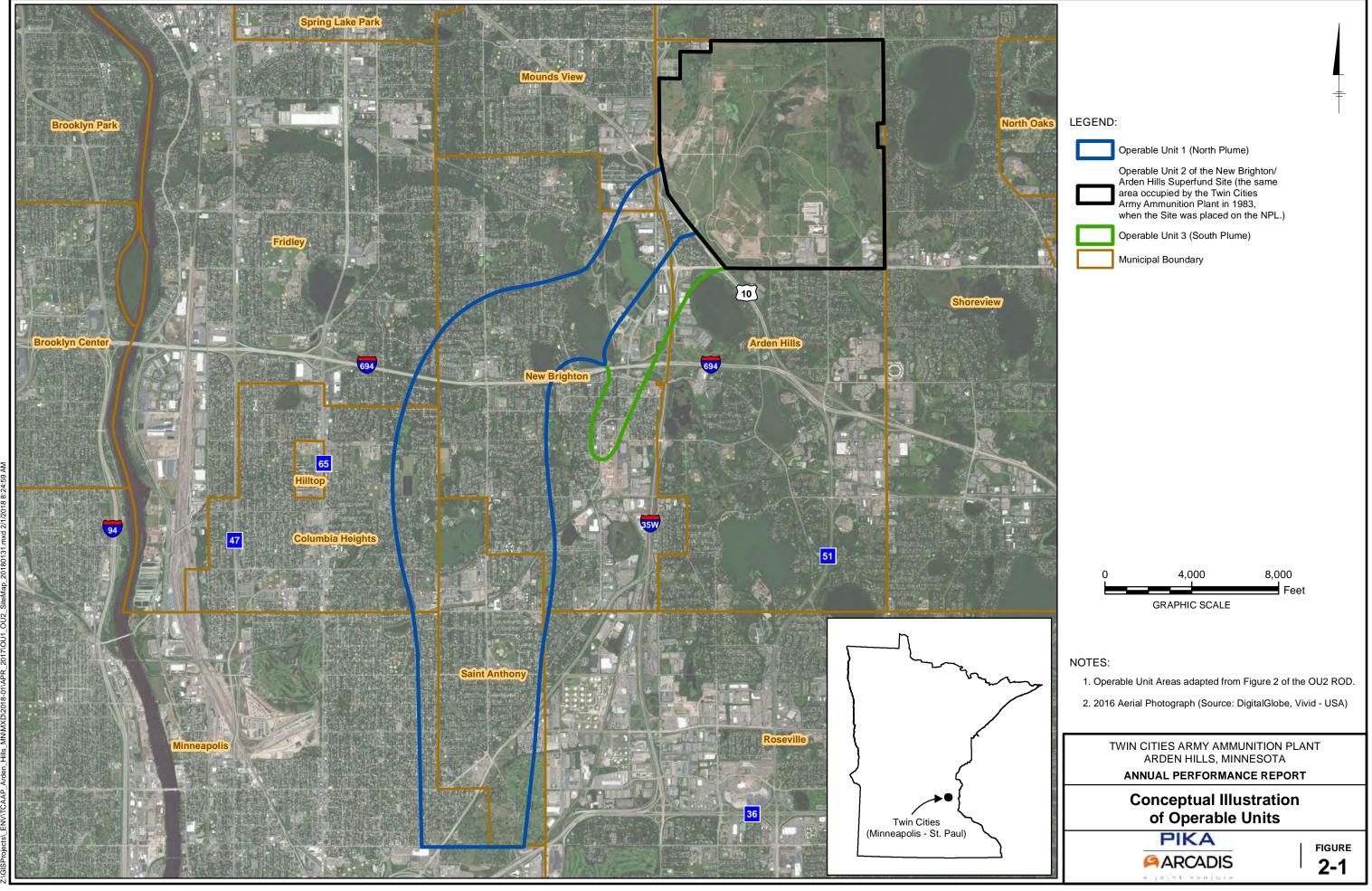
Table 13.3

Summary Of Groundwater Monitoring Requirements Operable Unit 3

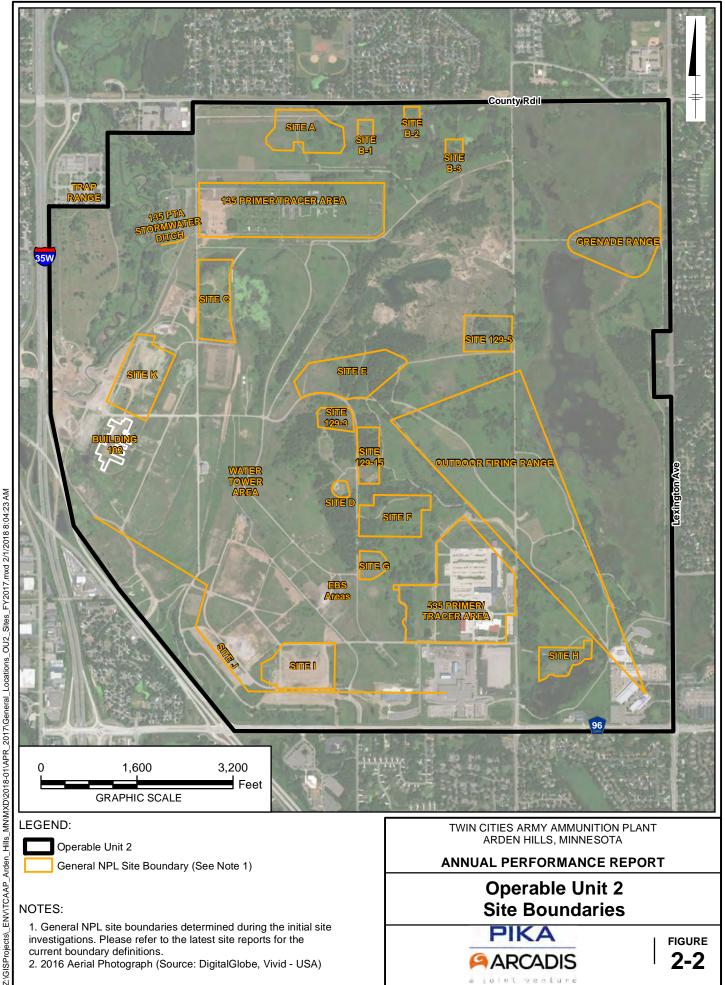
	Remedy Component		Monitoring Requirements	Implementing Party	Documents Containing the Monitoring Plan
#1	Monitored Natural Attenuation		Outlined below.		
#2	Groundwater Monitoring	a.	Water levels for use in drawing contour maps.	Northrop-Grumman Innovation Systems	OU3 Monitoring Plan in Annual Report
		b.	Groundwater sampling to track progress of clean-up and attenuation of plume.	Northrop-Grumman Innovation Systems	OU3 Monitoring Plan in Annual Report
#3	Drilling Advisories	a.	Verification that drilling advisories are in place and functioning as intended.	Army/MDH	NA
OR	: Overall Remedy	a.	Water quality monitoring to verify attainment of clean-up goals.	Northrop-Grumman Innovation Systems	OU3 Monitoring Plan in Annual Report

Table 13.4

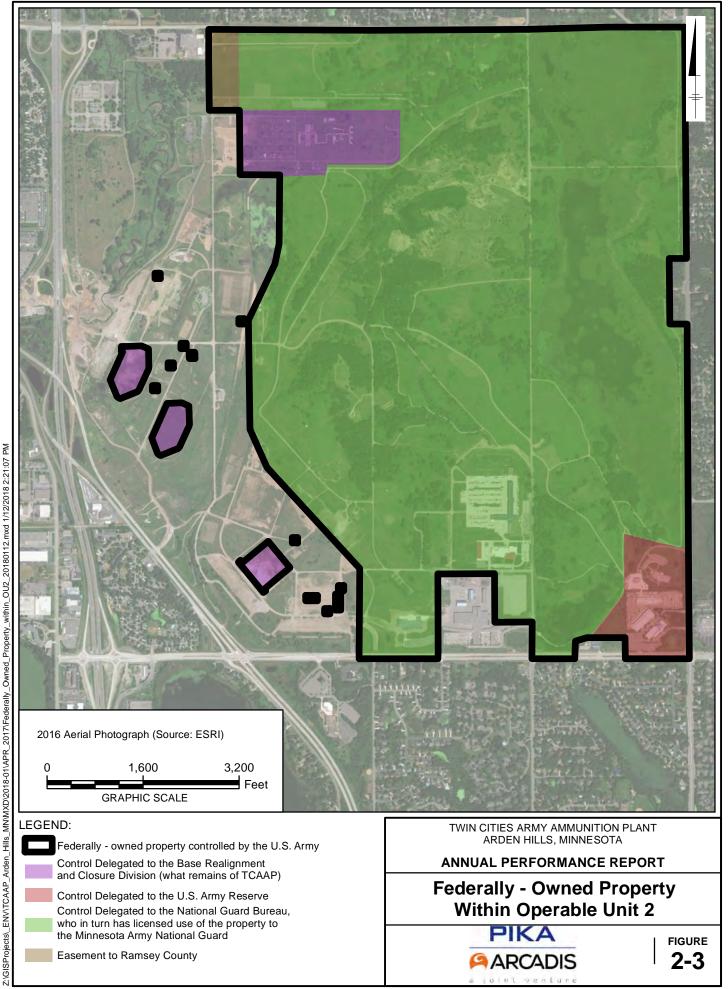

1,4-Dioxane Groundwater Sampling Results Fiscal Year 2018 Operable Unit 3


			1,4-Dioxane
	Screening Criteria	(HRL)	1.0
Location	Date	Dup	μg/L
03L673	6/29/2018		2.0
03L848	6/28/2018		0.71
03L854	6/28/2018		< 0.074 UB 0.02
03L854	6/28/2018	D	< 0.070
03L859	6/28/2018		3.1
03M848	6/28/2018		0.53
03U673	6/29/2018		< 0.070
04J866	6/27/2018		< 0.07
04U414	6/27/2018		0.057 JP
04U414	6/27/2018	D	< 0.07
04U673	6/29/2018		0.58
04U832	6/28/2018		3.3
04U845	6/27/2018		0.41
04U848	6/28/2018		0.68
04U851	6/27/2018		< 0.07
04U854	6/28/2018		< 0.56 UB 10.2
04U859	6/28/2018		4.6
04U860	6/29/2018		0.15
04U860	6/29/2018	D	0.14
04U863	6/27/2018		0.1
04U866	6/27/2018		0.061 JP

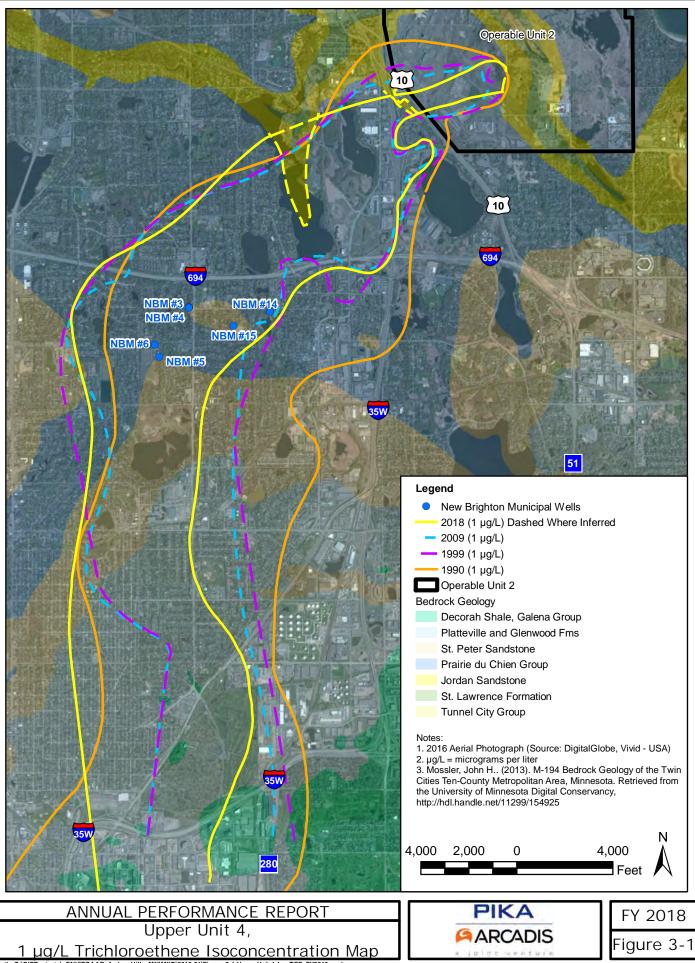
Notes:


- HRL Health Risk Limit (Minnesota Department of Health). Shading indicates exceedence of the HRL.
- D Field Duplicate
- JP Result is qualified as estimated since the detection is below the laboratory reporting limit
- UB # Result is qualified as non-detect. The following numerical value is the associated blank conentration.

FIGURES



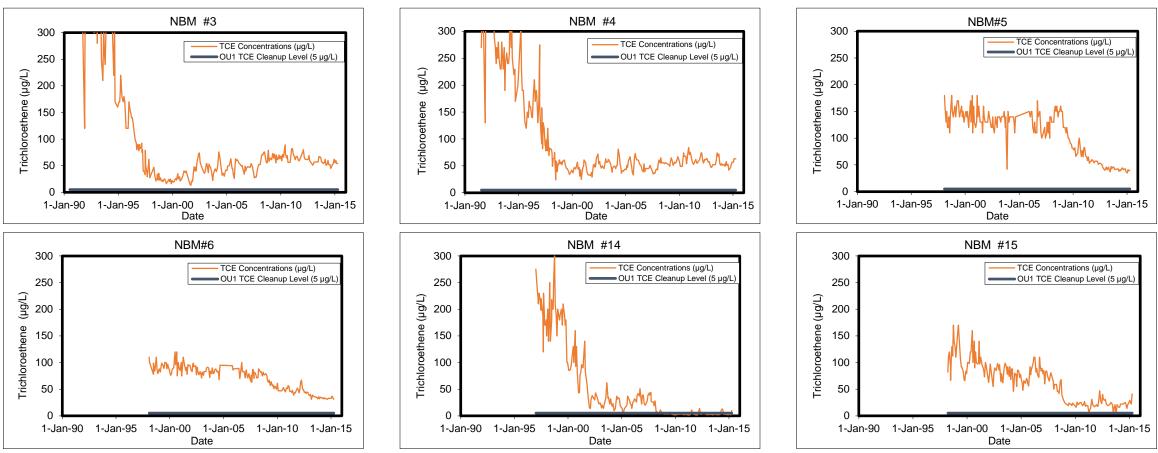
CITY: Minneapolis Lutvicroup: IML/V created by: MG Last Saved by: mgress TCAAP


Arden_Hills_MN\MXD\2018-01\APR_2017\General_ ojects_ENV\TCAAP_ GISP

City: Minneapolis Div/Group: IMDV Created By: MG Last Saved By: mgress TCAAP

GISProjects_ENV\TCAAP_

City: Minneapolis Div/Group: IMDV Created By: MG Last Saved By: mgress TCAAP

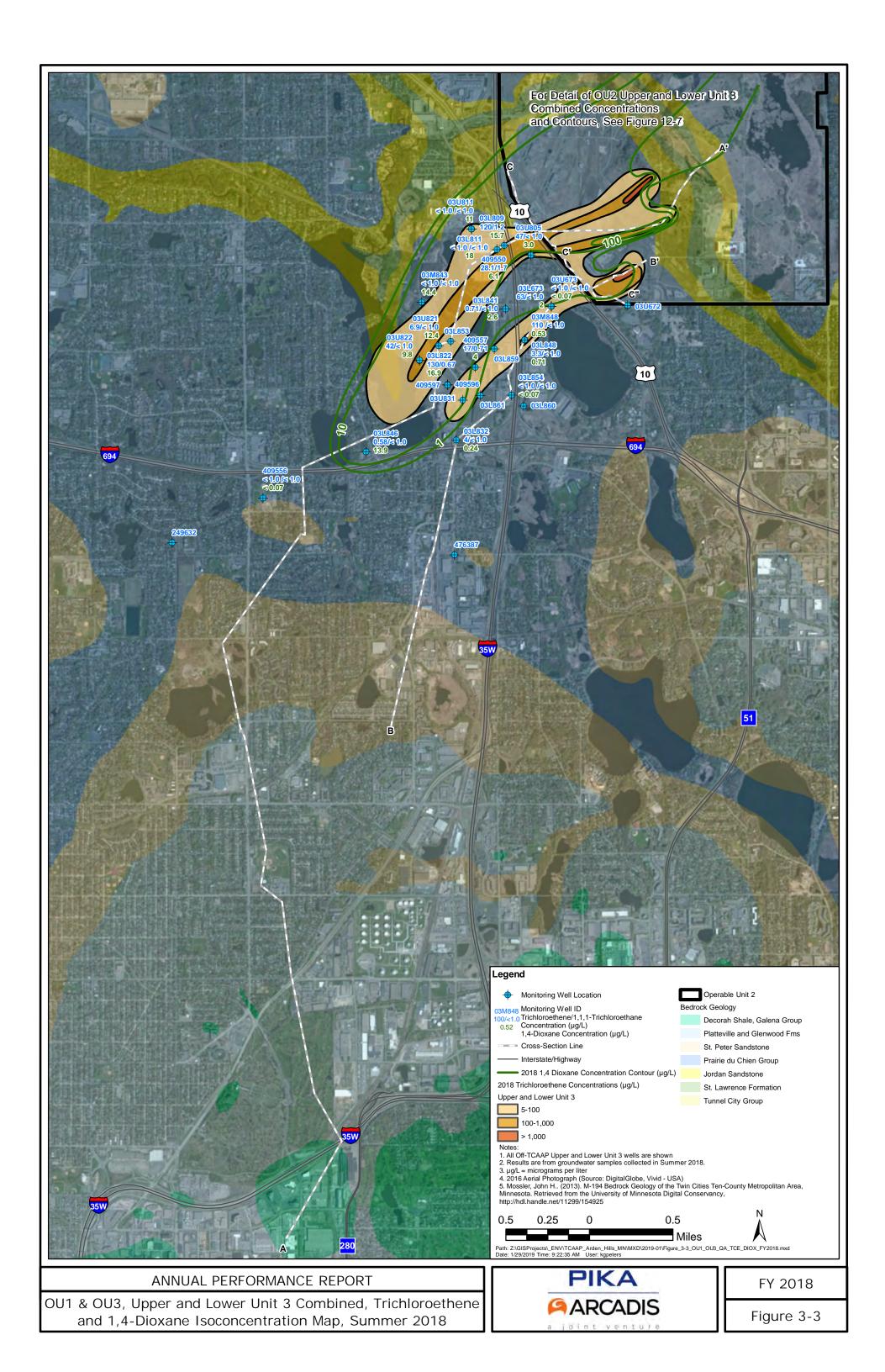


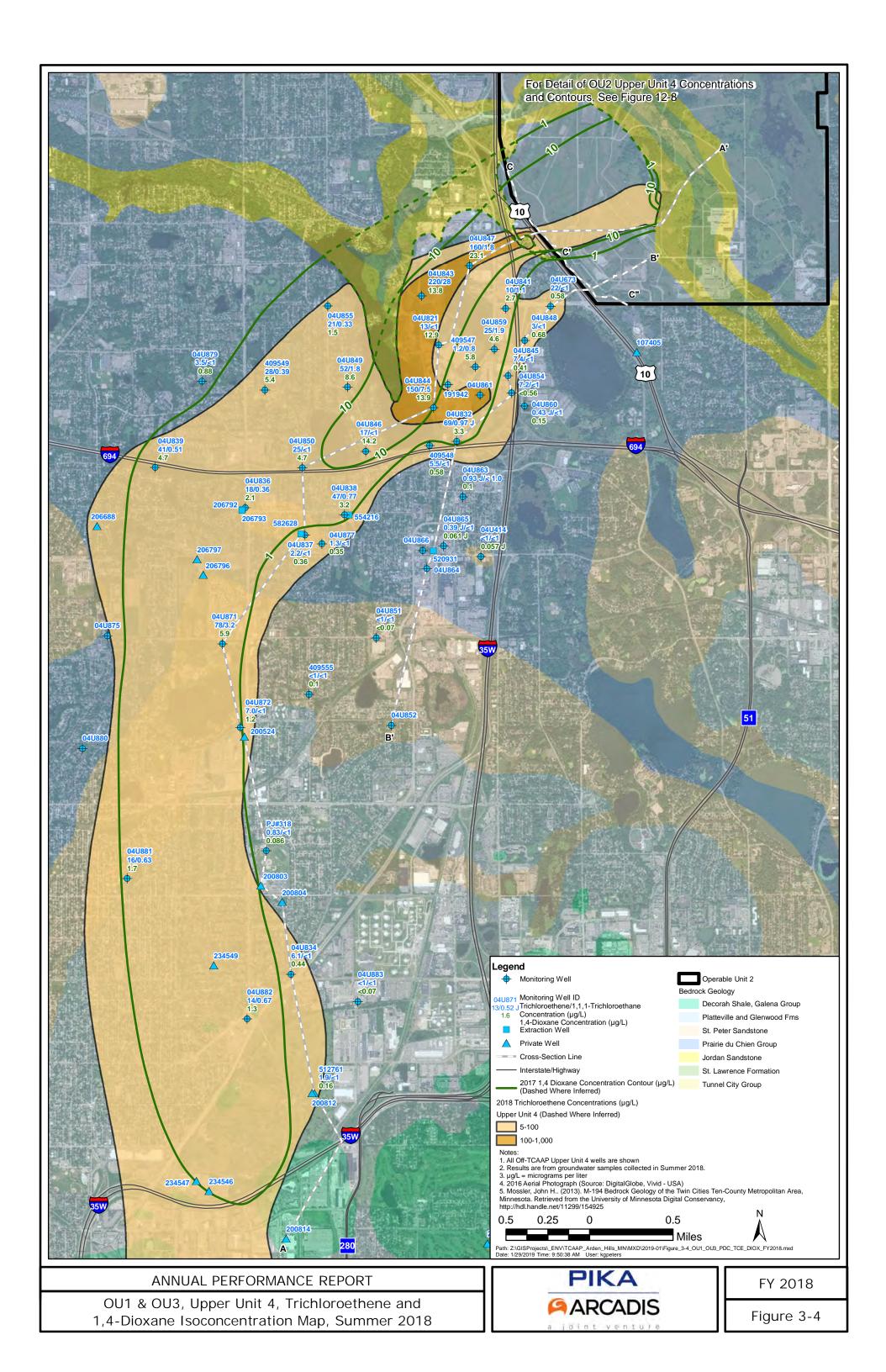
Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2019-01\Figure_3-1 Upper Unit 4 lug TCE_FY2018.mxd Date: 1/17/2019 Time: 7:35:34 AM User: kgpeters

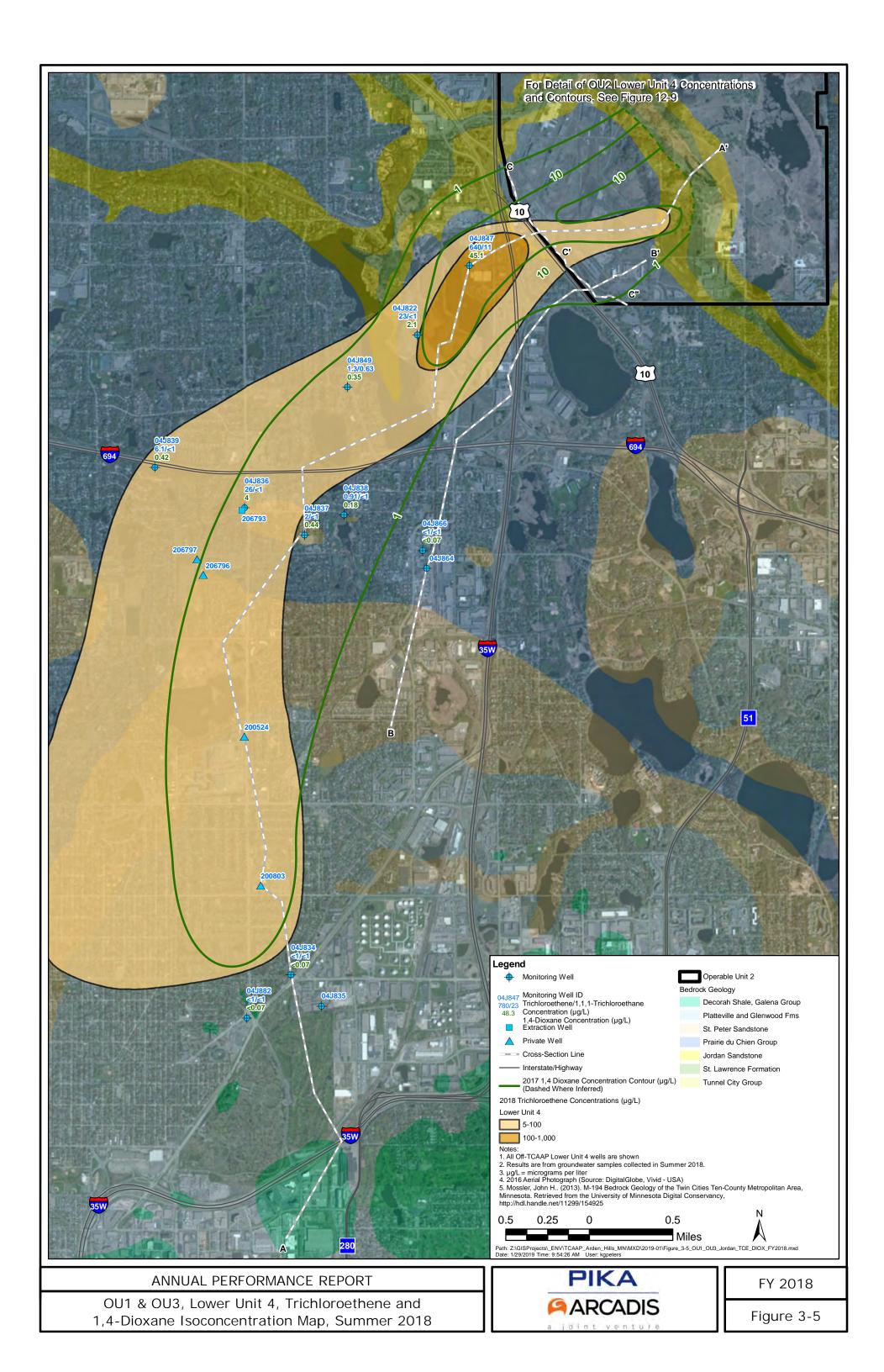
Figure 3-2 New Brighton Municipal Wells: Trichloroethene Water Quality Trends

PIKA ARCADIS

Twin Cities Army Ammunitions Plant Arden Hills, MN


Notes:


 Routine pumping of the NBCGRS was ceased on April 15, 2015, with notice to the USEPA/MPCA, due to detection of 1,4-dioxane in the Prairie du Chien and Jordan Aquifer municipal wells. Since the granular activated carbon (GAC) does not remove 1,4-dioxane, New Brighton is preferentially pumping deep aquifer wells that have no detectable 1,4-dioxane while the City evaluates the feasibility of 1,4-dioxane removal technologies. This has been referred to as a "Remedy Time-Out," and normal pumping of the NBCGRS will not be resumed until a technology is selected and modification of the NBCGRS is designed and constructed. The Fridley Interconnection was also closed on April 15, 2015.


Acronyms and Abbreviations:

TCE = Trichloroethene

 $\mu g/L = micrograms per liter$

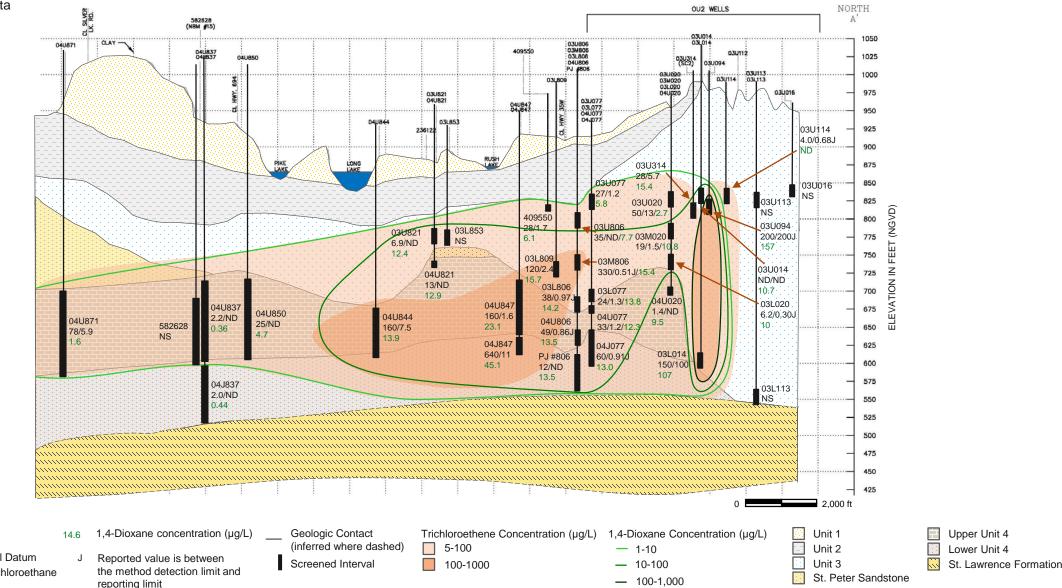
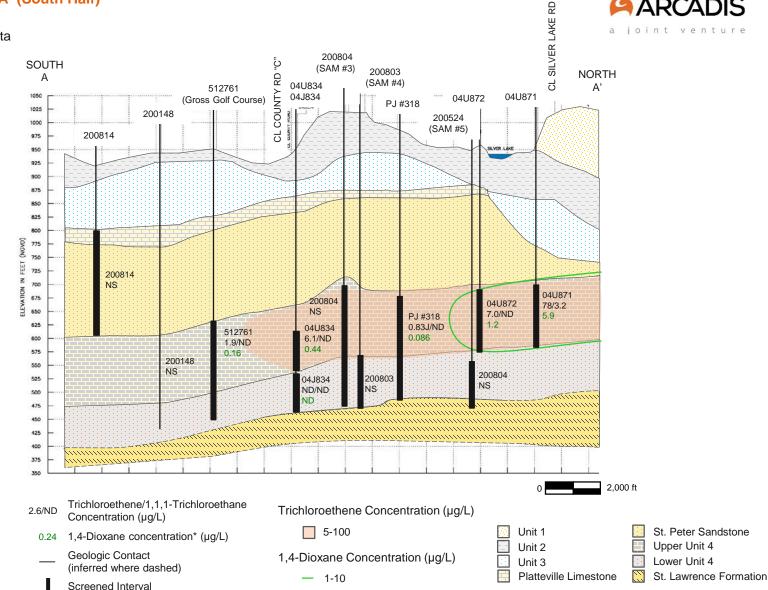


Figure 3-6 OU2-OU1 Trichloroethene Cross Section A-A' (North Half)

U.S Army - TCAAP Arden Hills, Minnesota

Legend

04J077


NS Not Sampled

Well ID

- ND Analyte Not Detected
- µg/L Micrograms per Liter
- NGVD National Geodetic Vertical Datum
- 69/1.5 Trichloroethene/1,1,1-Trichloroethane Concentration (μg/L)

Figure 3-7 **OU2-OU1 Trichloroethene Cross Section A-A' (South Half)**

U.S Army - TCAAP Arden Hills, Minnesota

PIKA

ARCADIS

a joint venture

Legend

- 512761 Well ID
 - Not Sampled NS
 - Analyte Not Detected ND
 - Micrograms per Liter µg/L
- National Geodetic NGVD Vertical Datum
- Reported value is between J the method detection limit and reporting limit

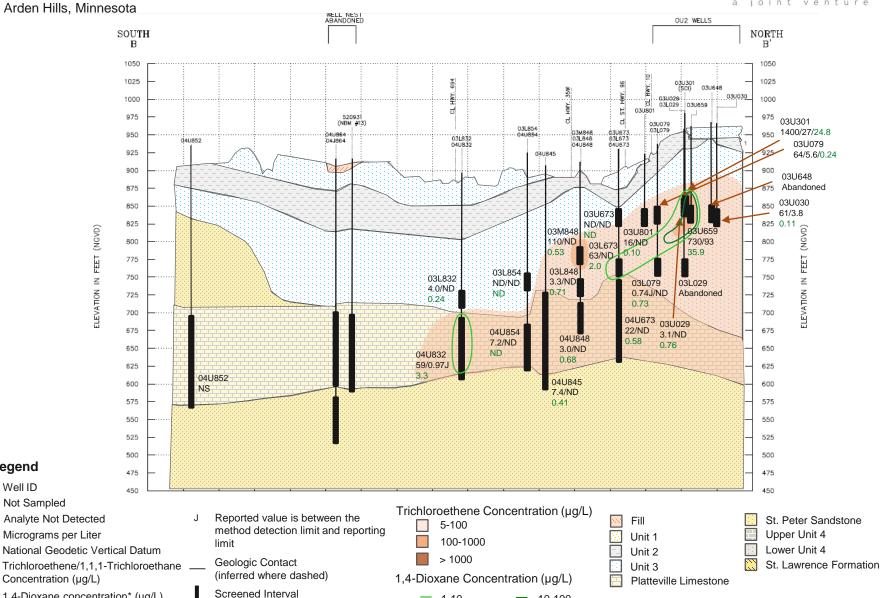
Figure 3-8 **OU2-OU3 Trichloroethene Cross Section B-B'**

U.S Army - TCAAP Arden Hills, Minnesota

Legend

0.25 1,4-Dioxane concentration* (µg/L)

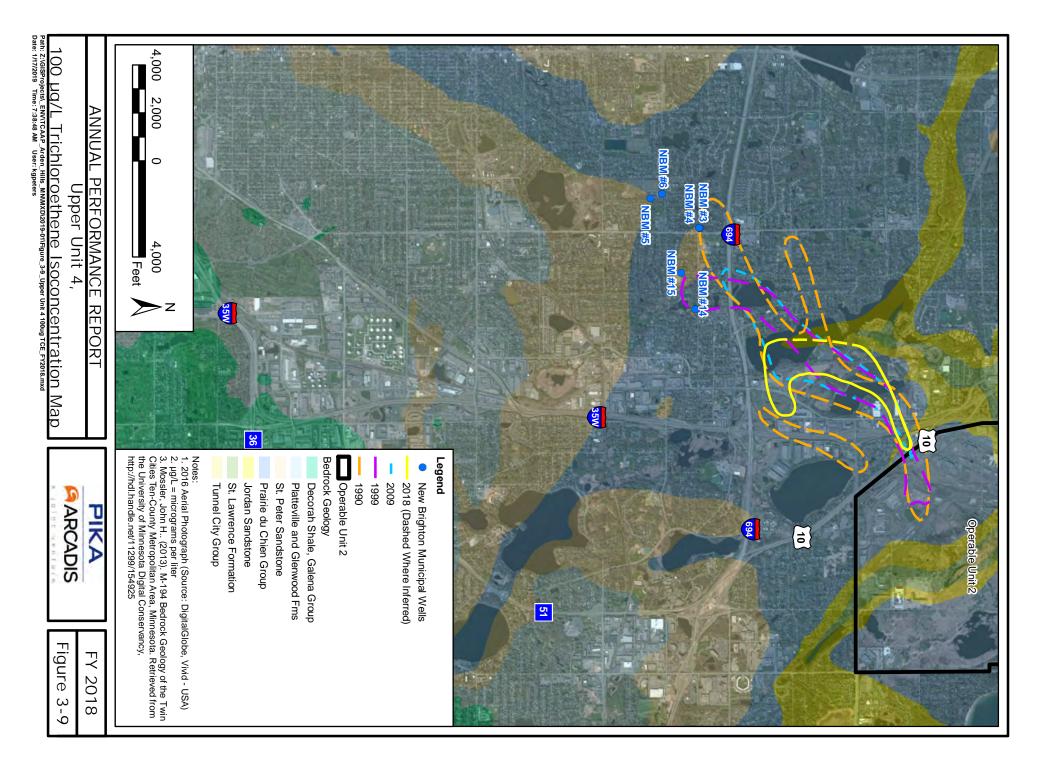
03U079 Well ID

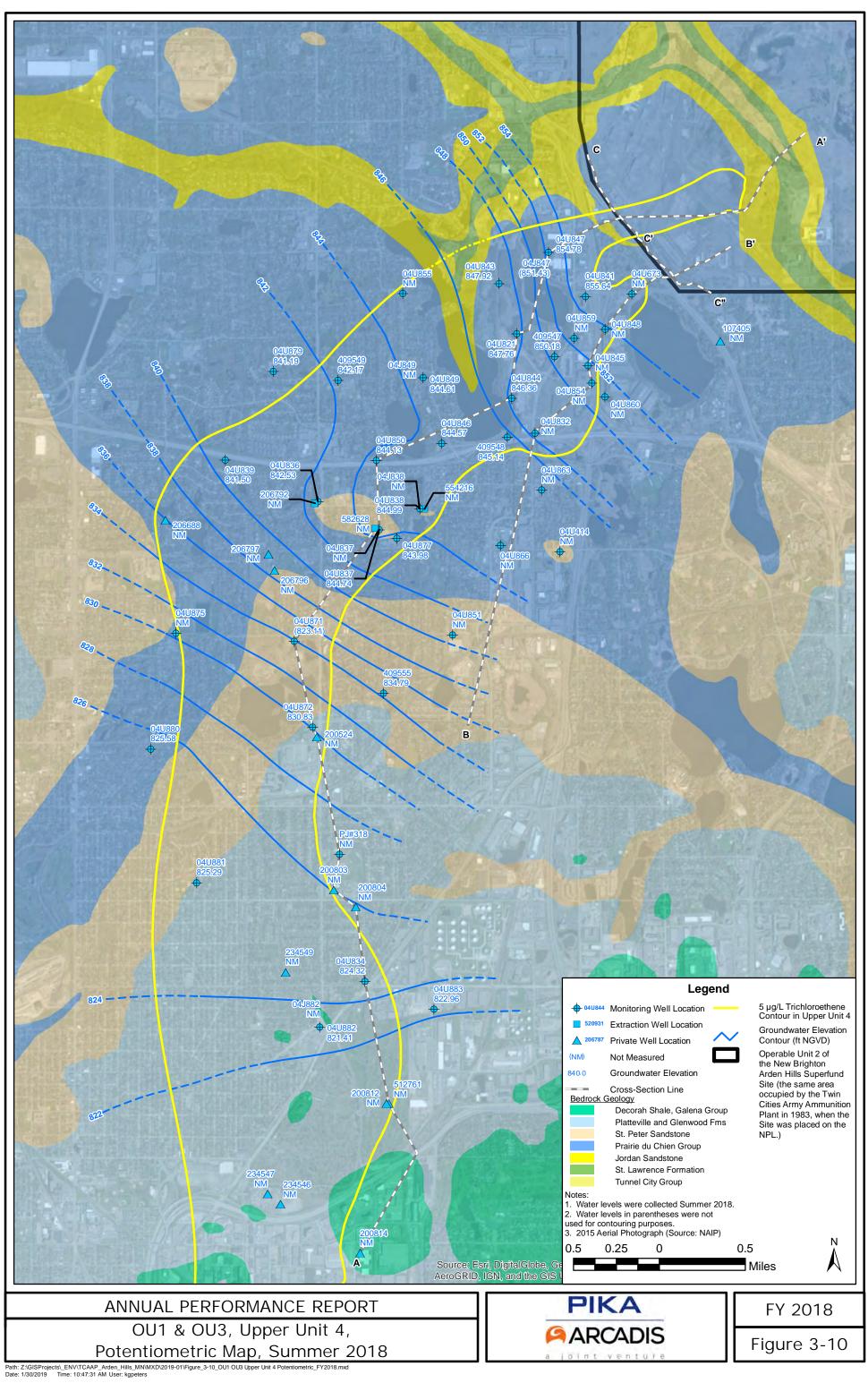

NS

ND

µg/L

NGVD


55/8.2



- 1-10

— 10-100

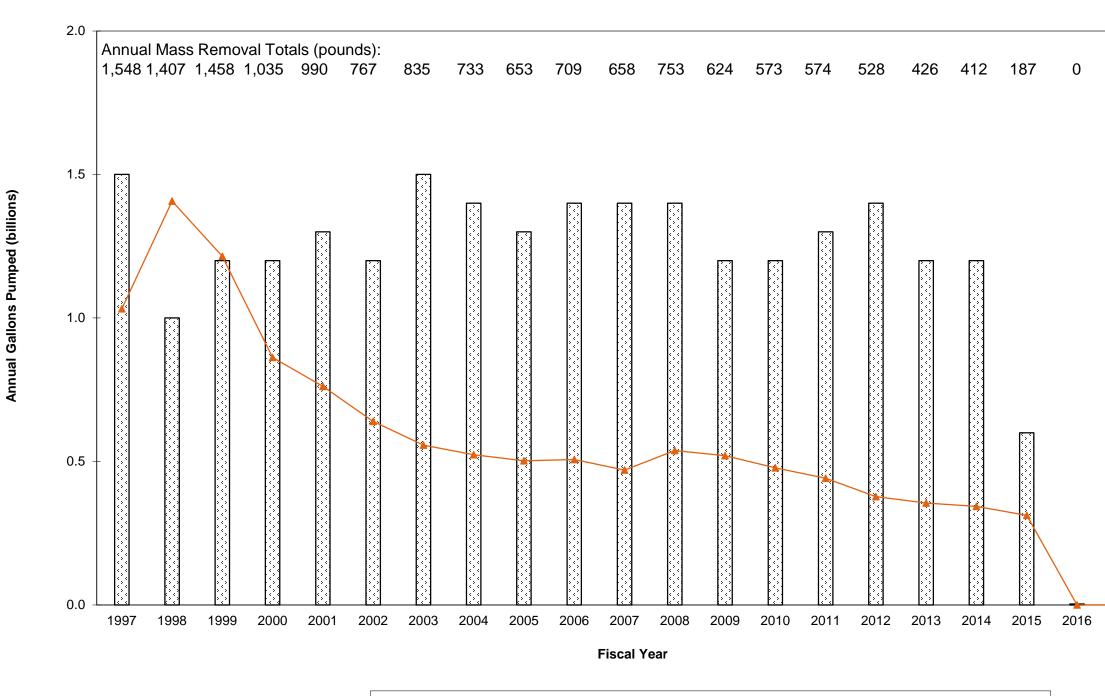
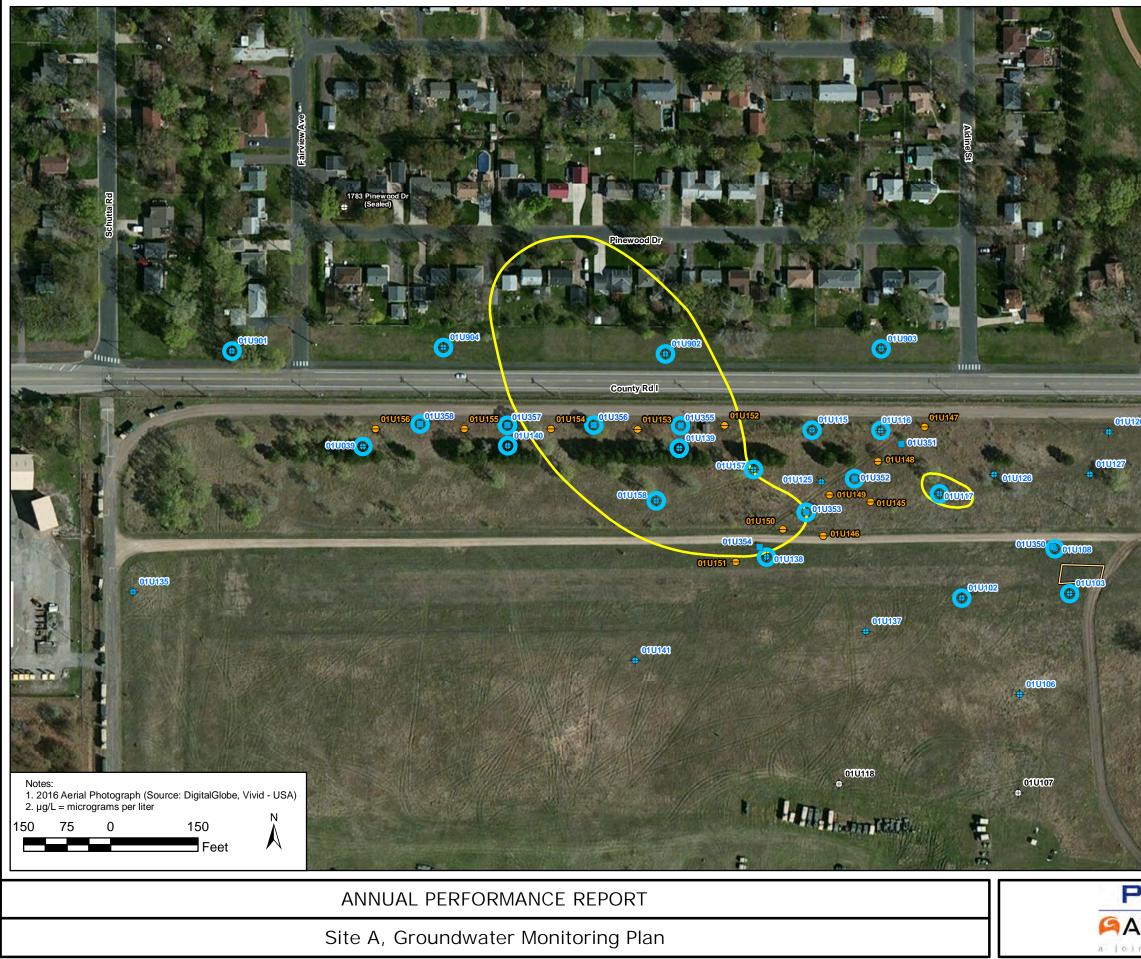

PIKA ARCADIS a ioint venture

Figure 3-11 NBCGRS History


Twin Cities Army Ammunitions Plant Arden Hills, MN

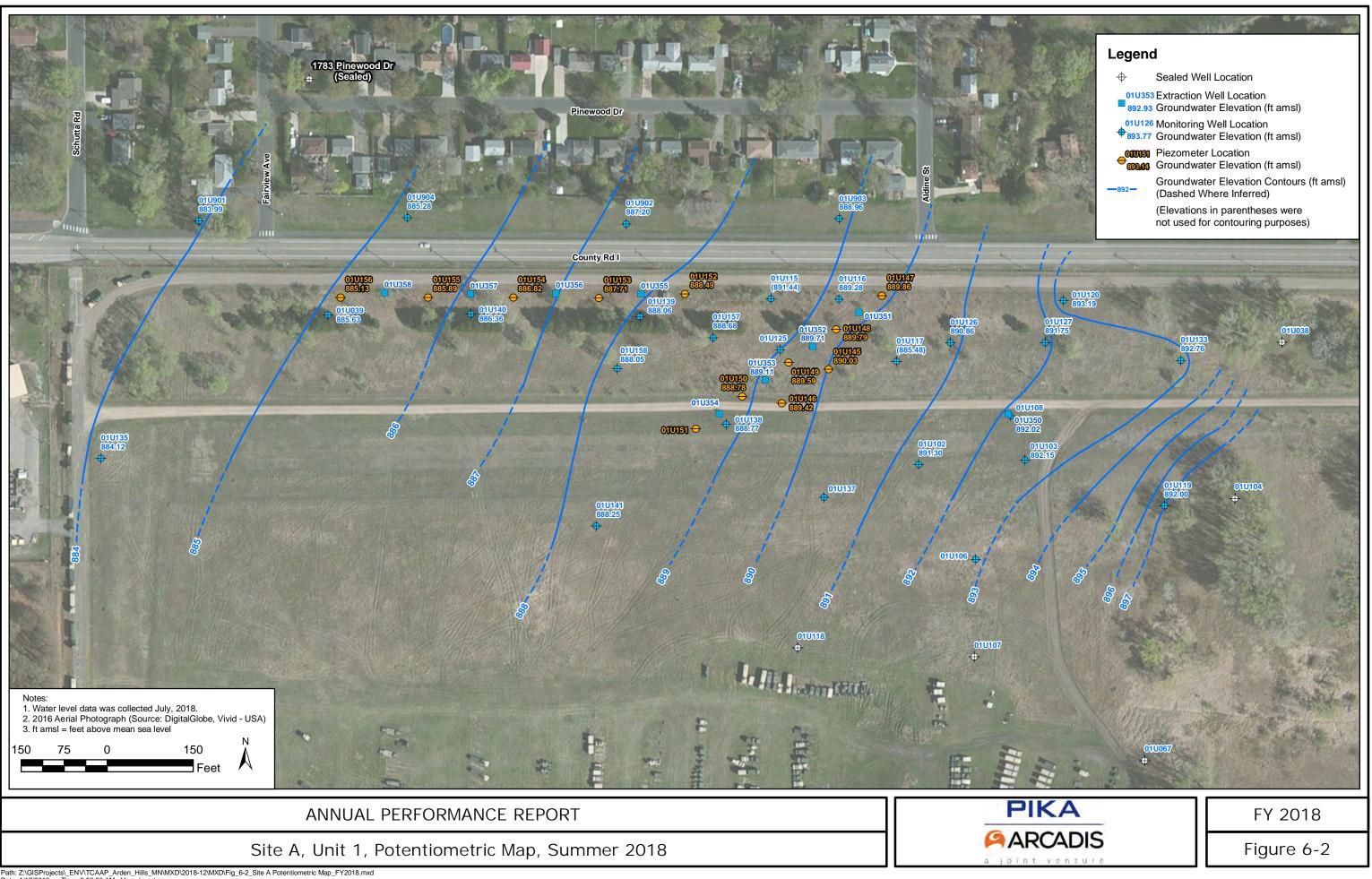
Annual Gallons Pumped

		2,000	
0	0	- 1,800	
		- 1,600	Pumped
		- 1,400	Volume allons)
		- 1,200	per Unit billion g
		- 1,000	Annual Mass Removal per Unit Volume Pumped (pounds per billion gallons)
		- 800	ual Mass (po
		- 600	Ann
		- 400	
		- 200	
2017	2018	0	

Legend

⊕01U353 Sealed Well Location **D**01U353 Extraction Well Location +01U040 Monitoring Well Location ←010133 Piezometer Location

Annual Water Quality


1 μg/L cis-1,2-Dichloroethene Contour (2018) 1945 Trench

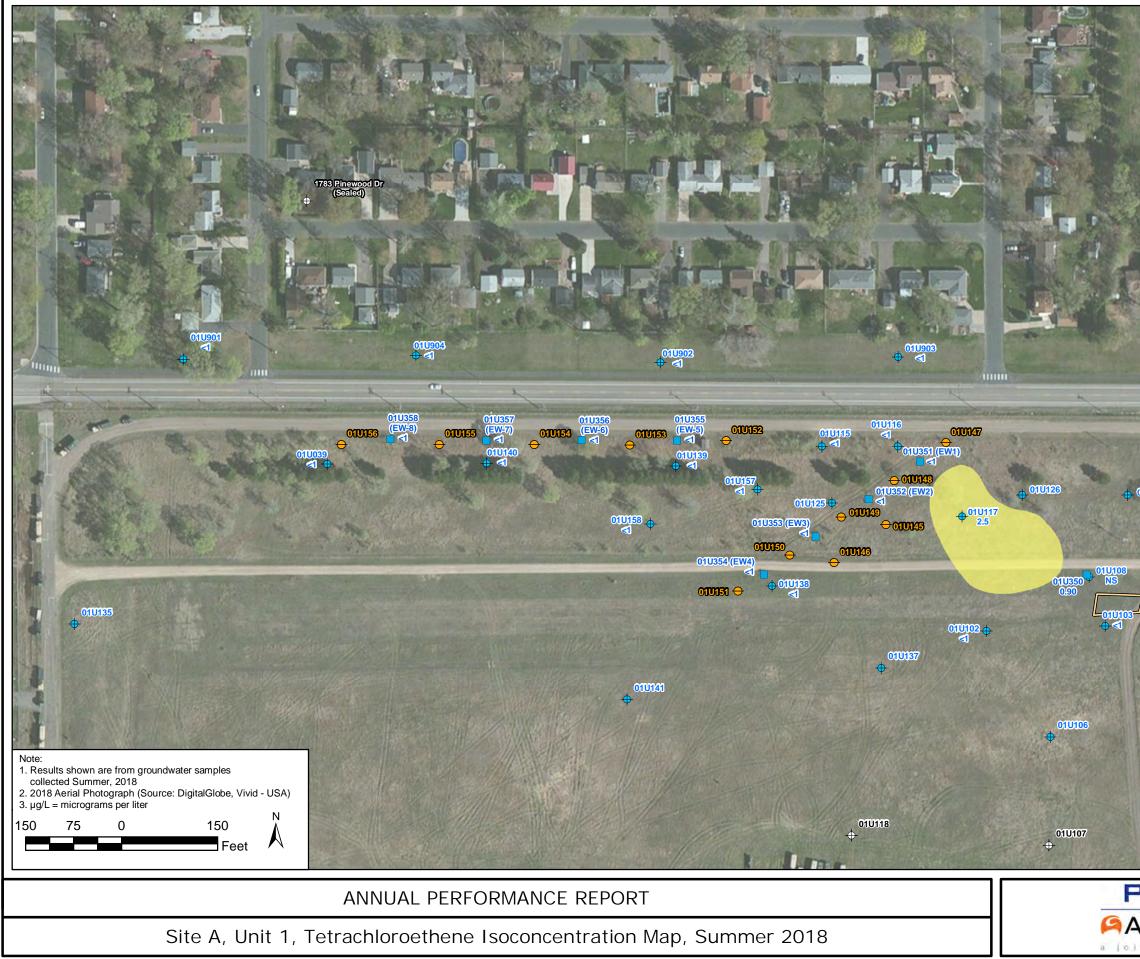

010104

Figure 6-1

FY 2018

Legend

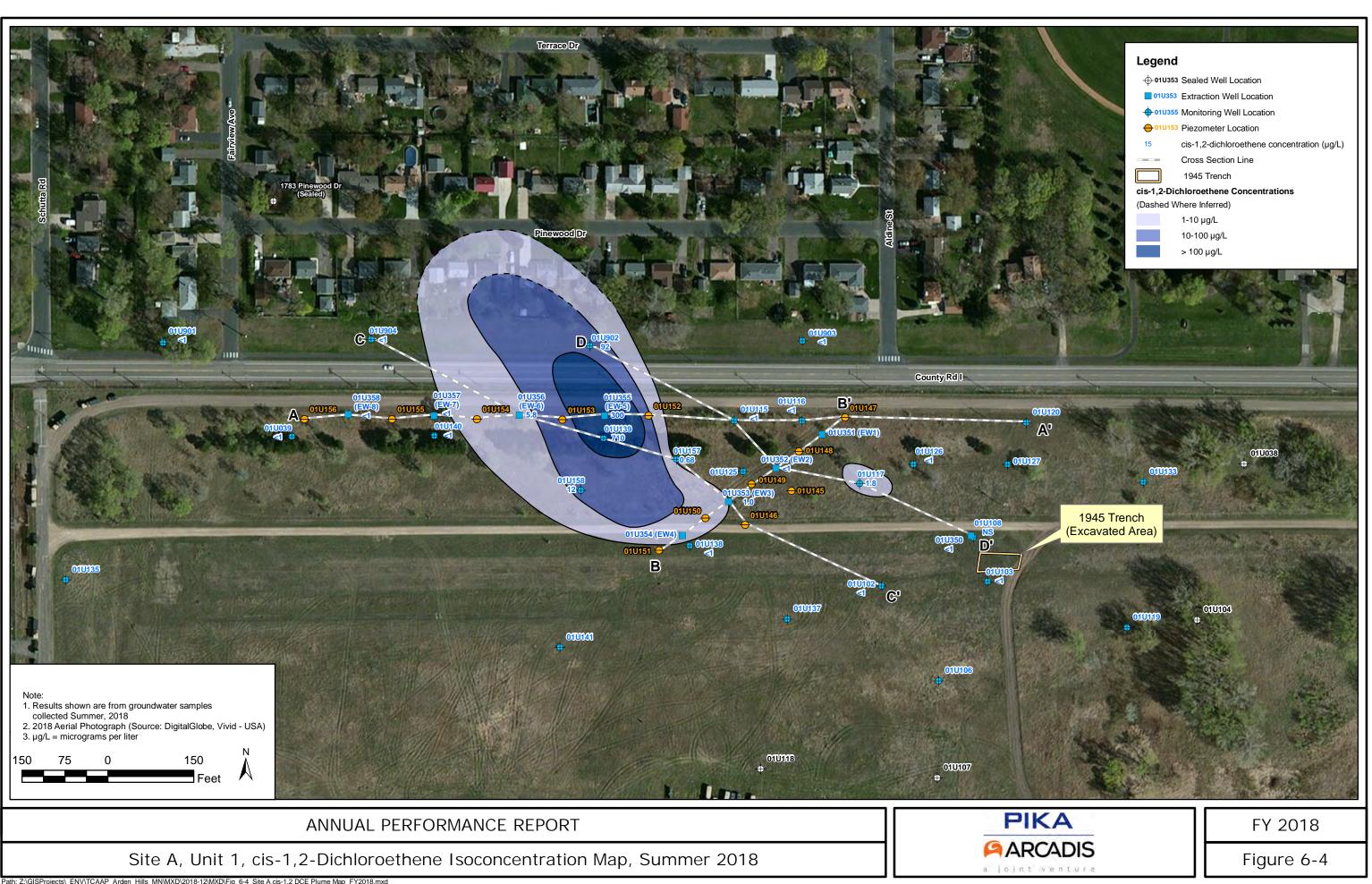
	1945 Trench	
⊕ 01U352	Sealed Well Location	
01U352	Extraction Well Location	
01U126	Monitoring Well Location	
 01U146	Piezometer Location	
10	Tetrachloroethene Concentration (μ g/L)	

Tetrachloroethene Concentrations

01U038

1-10 µg/L

U127


9

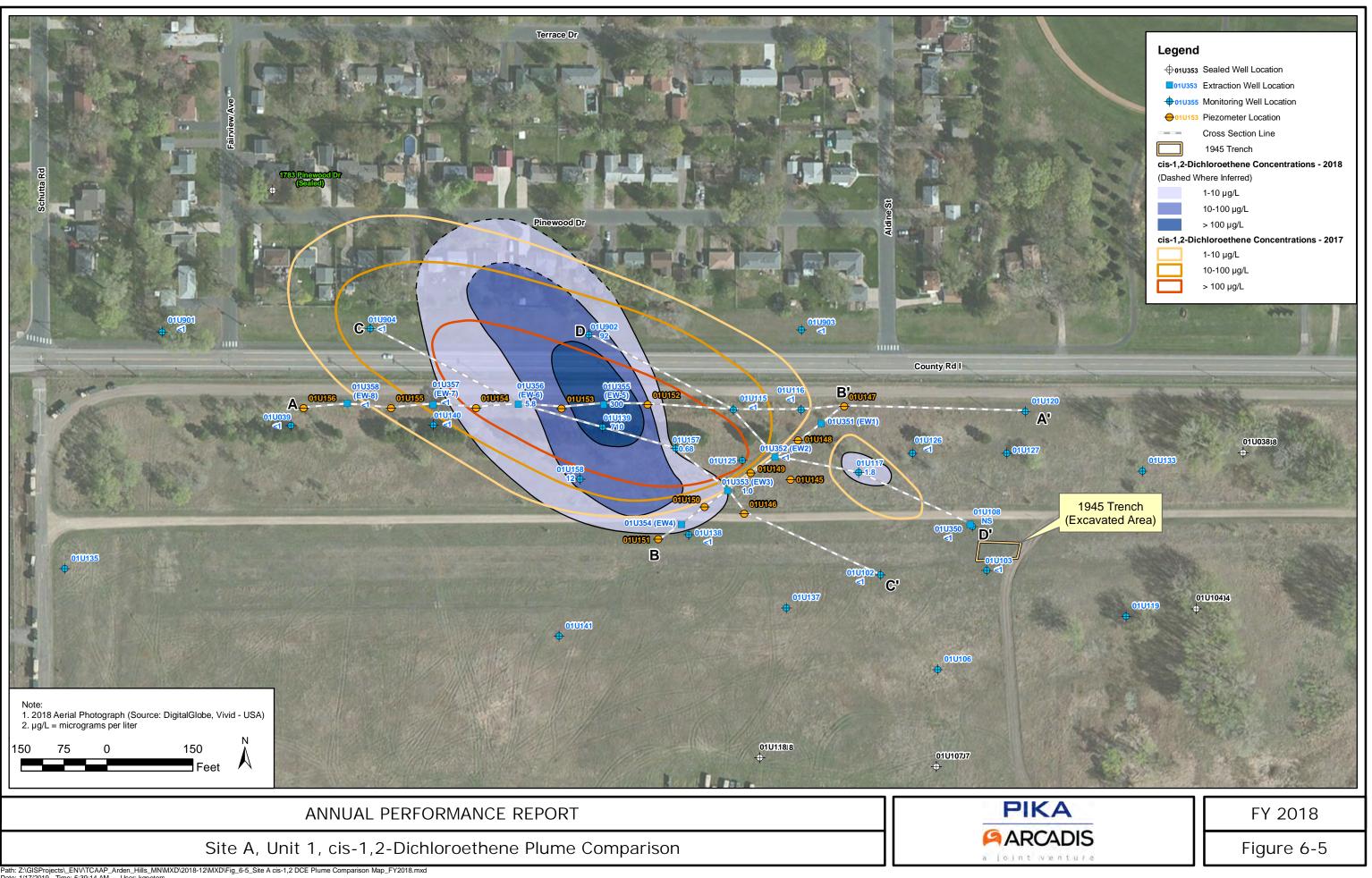

01U104

Figure 6-3

FY 2018

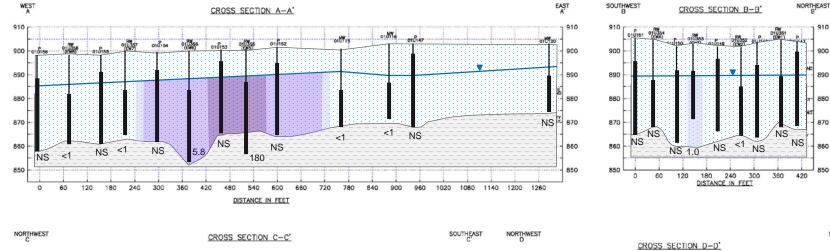
Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2018-12\MXD\Fig_6-5_Site A cis-1,2 DCE Plume Comparison Map_FY2018.mxd Date: 1/17/2019 Time: 5:39:14 AM User: kgpeters

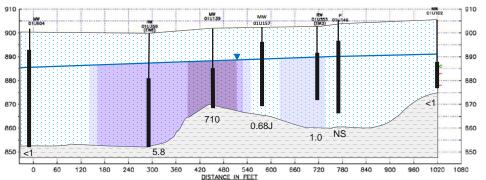
Figure 6-6 cis-1,2-Dichloroethene Cross Sections A, B, C, D

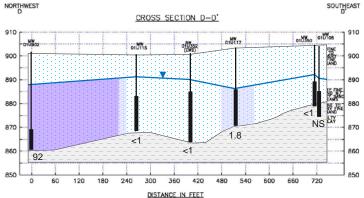
U.S Army - TCAAP Arden Hills, Minnesota

910

900


890

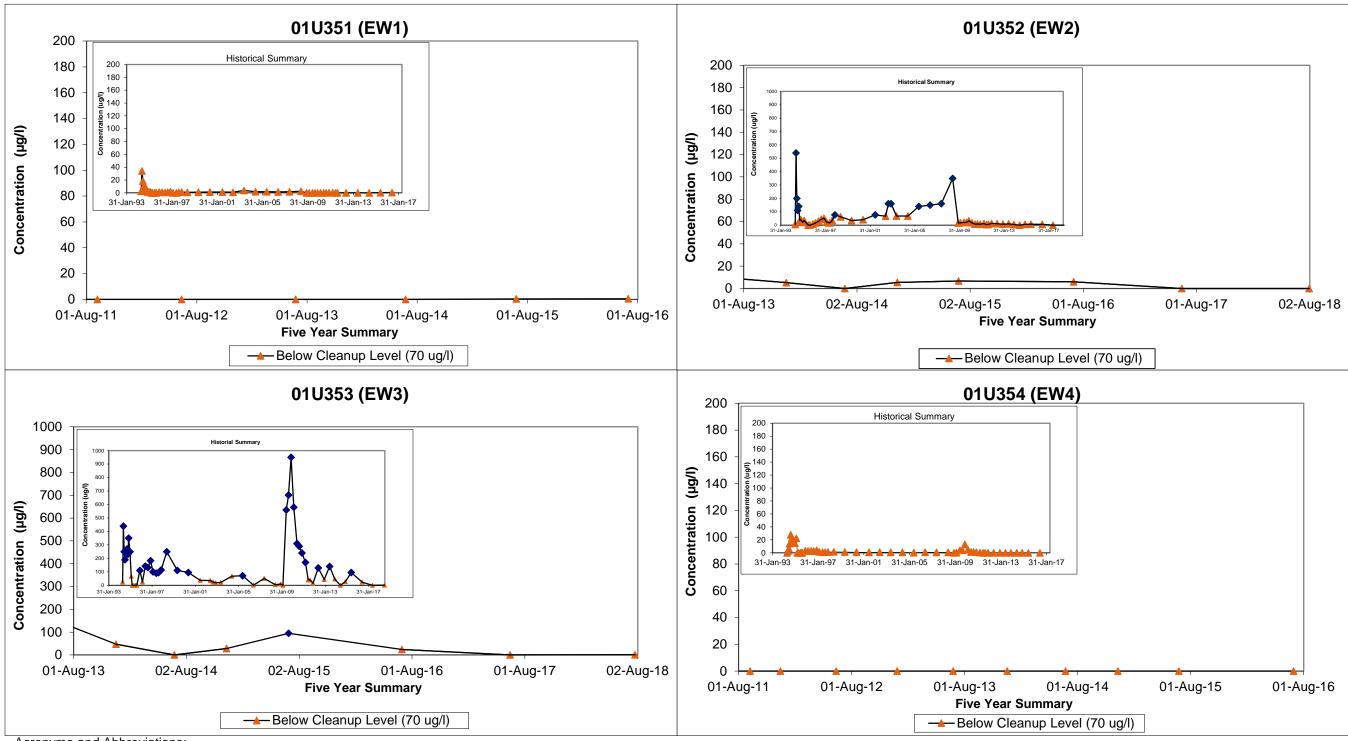

880


870

860

850

Legend

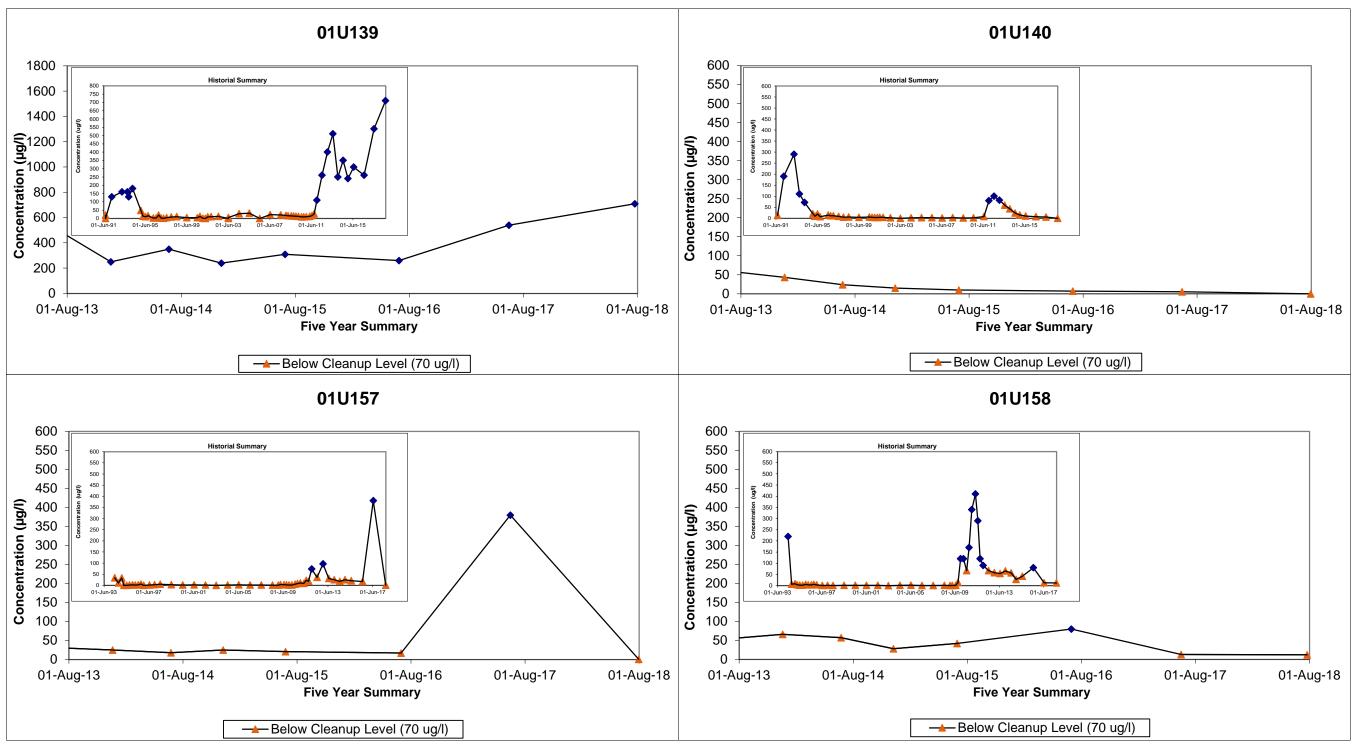

- 1-10 \Box 10-100
- > 100

Micrograms per Liter µg/L

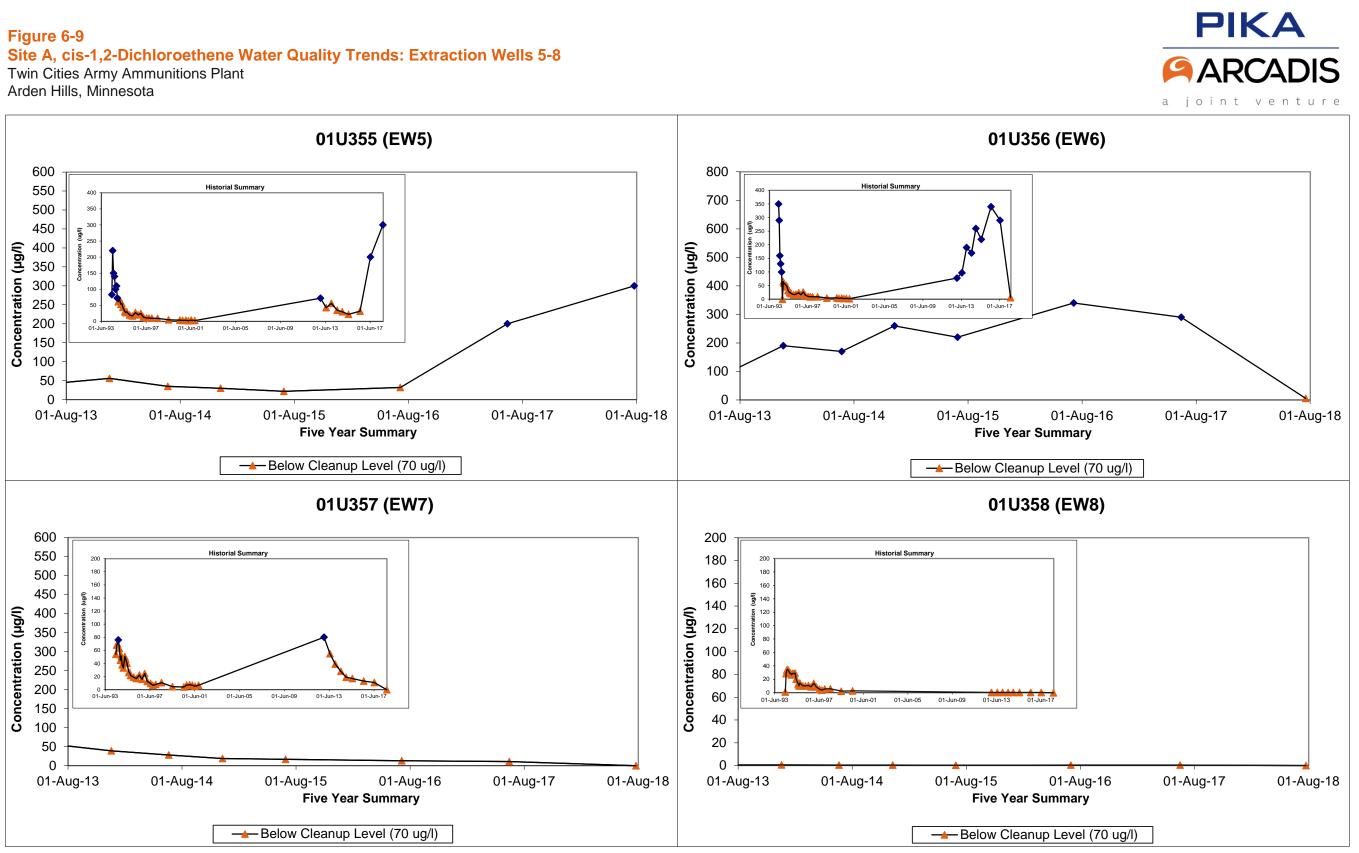
- cis-1,2-Dichloroethene Concentration (µg/L) Summer 2018 24
- Water Table
- Screened Interval

Figure 6-7 Site A, cis-1,2-Dichloroethene Water Quality Trends: Extraction Wells 1-4

Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

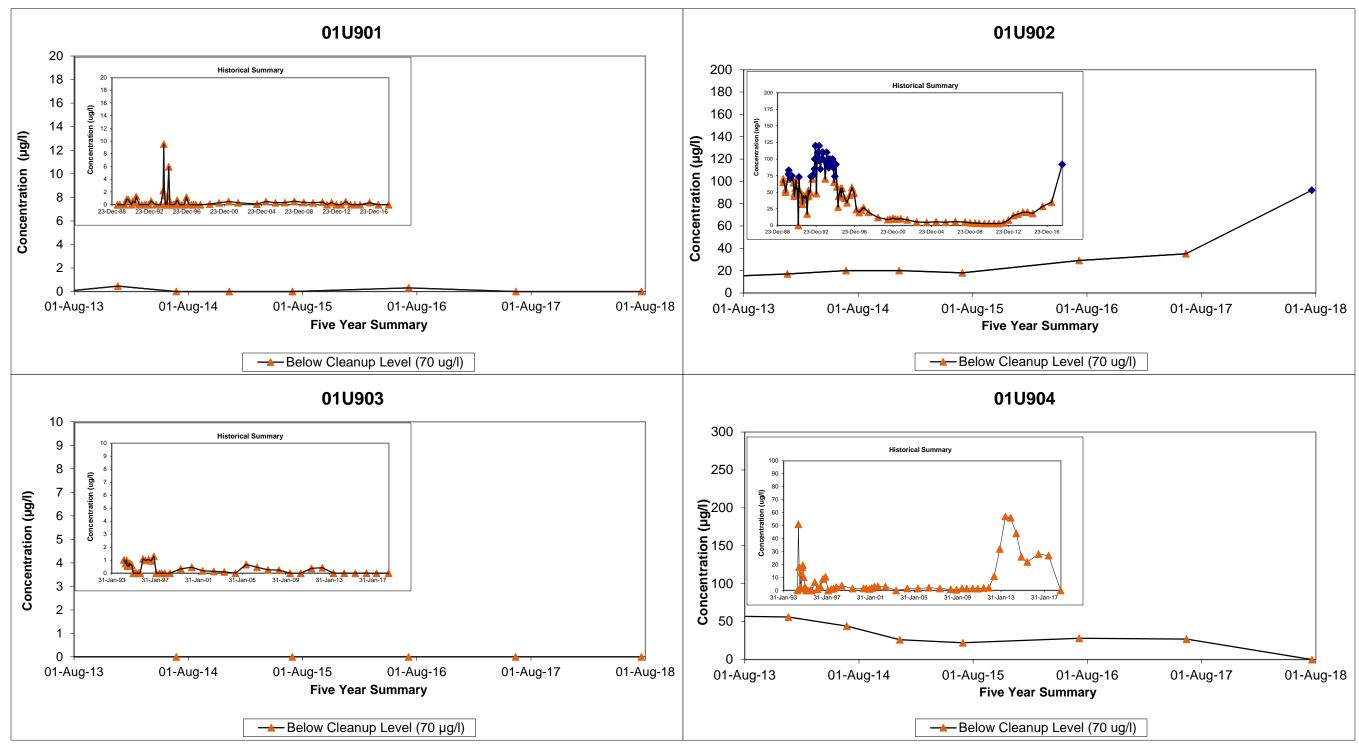


Acronyms and Abbreviations: EW = Extraction Well µg/L = micrograms per liter

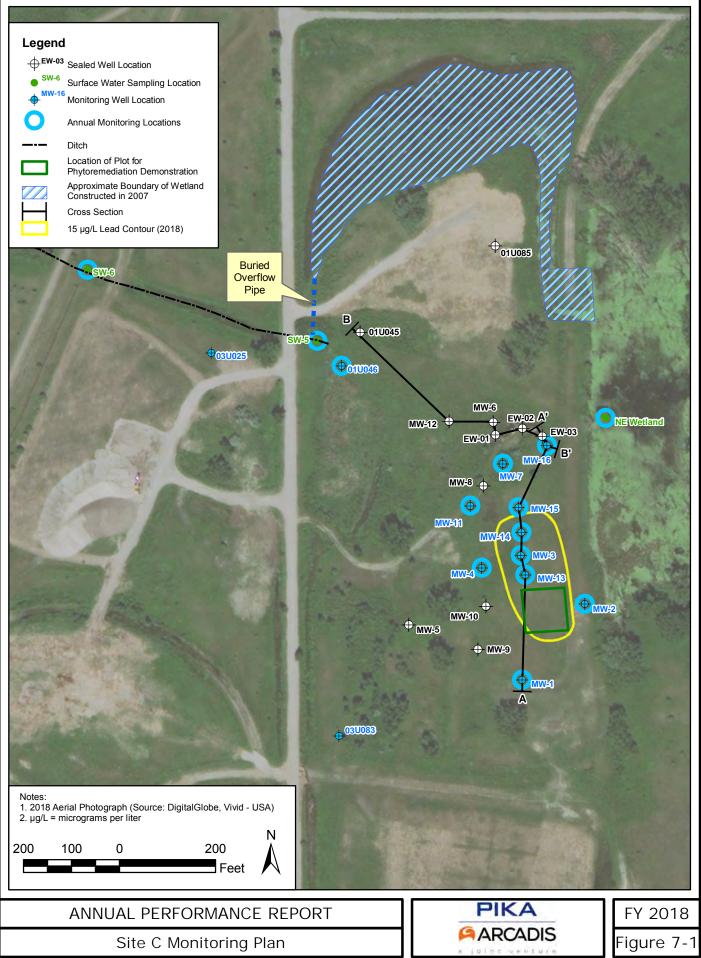

Figure 6-8 Site A, cis-1,2-Dichloroethene Water Quality Trends: Monitoring Wells

Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

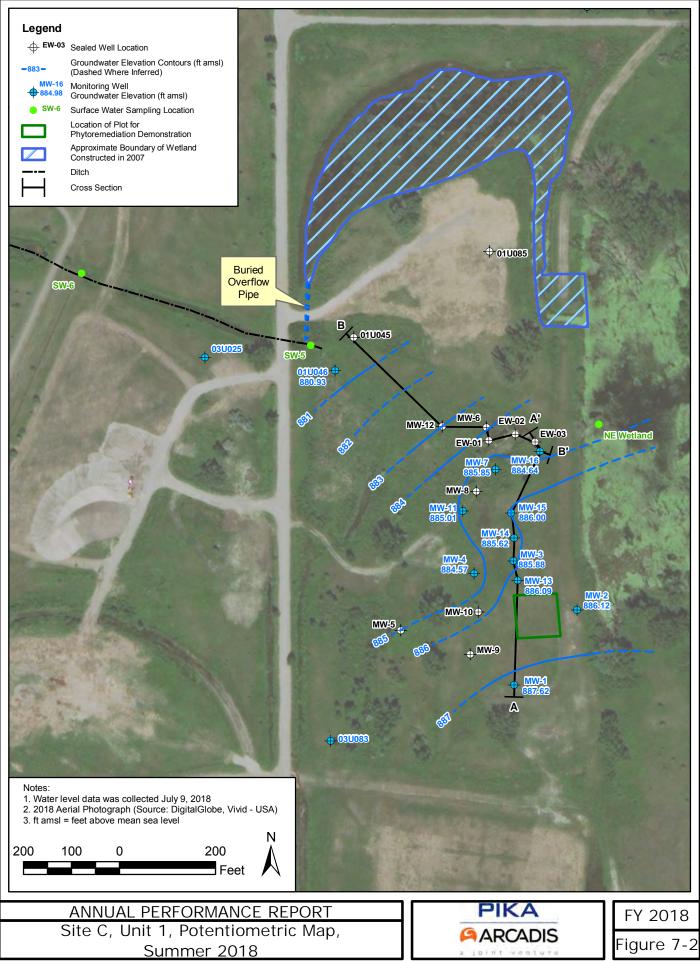
Acronyms and Abbreviations: $\mu g/L = micrograms per liter$



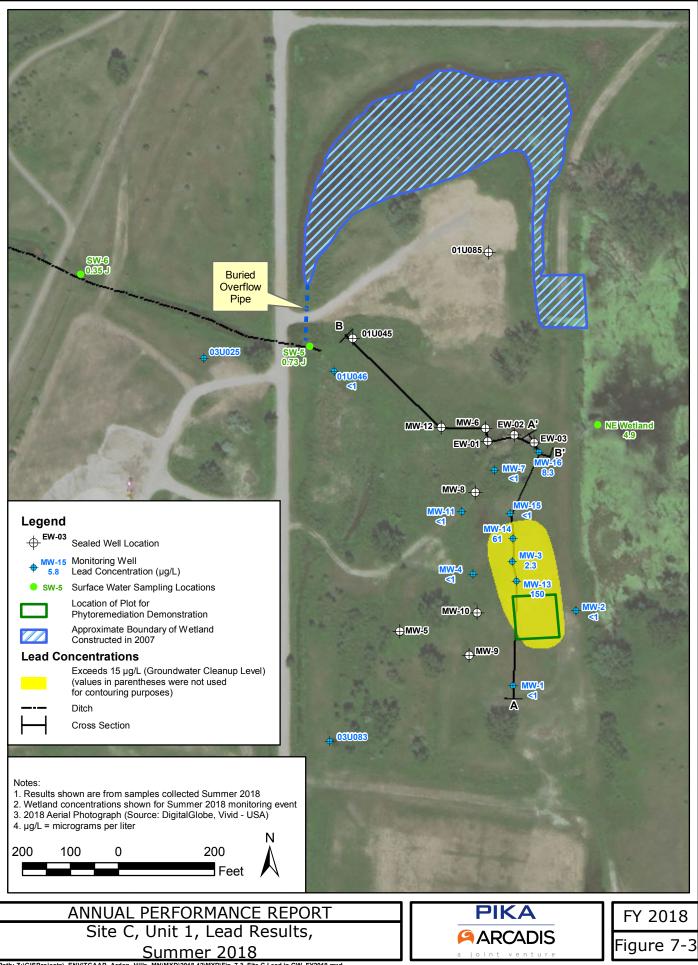
Acronyms and Abbreviations: EW = Extraction Well $\mu g/L = micrograms per liter$


Figure 6-10 Site A, cis-1,2-Dichloroethene Water Quality Trends: Contingency Locations Twin Cities Army Ammunitions Plant

Arden Hills, Minnesota

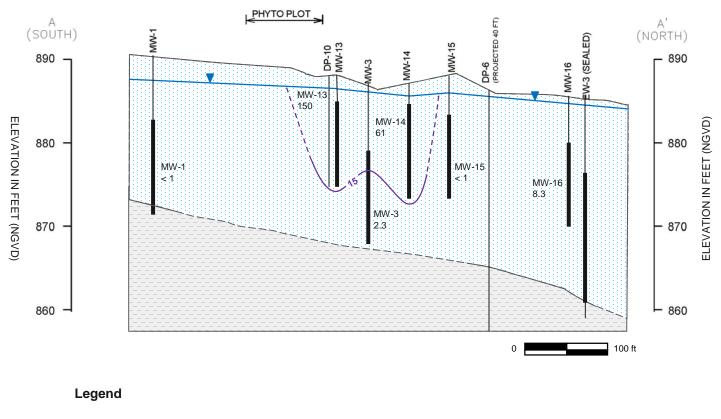


Acronyms and Abbreviations: $\mu g/L = micrograms per liter$



Path: Z:\GISProjects_ENVITCAAP_Arden_Hills_MN\MXD\2018-12\MXD\Fig_7-1_Site C Site Plan_FY2018.mxd Date: 12/28/2018 Time: 9:46:09 AM User: kgpeters

Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2018-12\MXD\Fig_7-2_Site C Potentiometric Map_FY2018.mxd Date: 1/30/2019 Time: 12:16:18 PM User: kgpeters



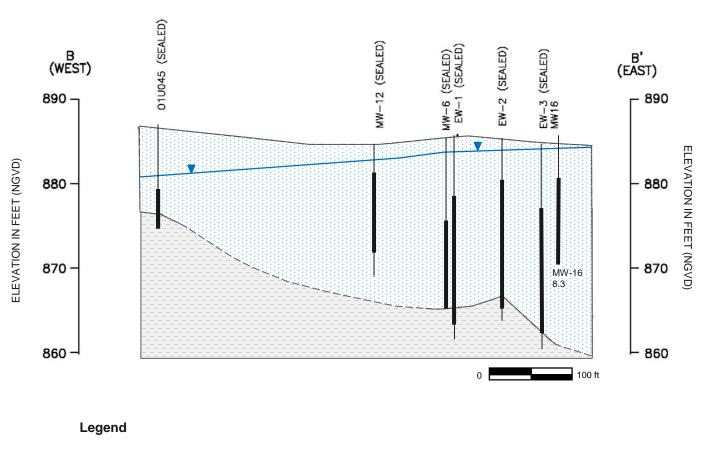
Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2018-12\MXD\Fig_7-3_Site C Lead in GW_FY2018.mxd Date: 5/23/2019 Time: 2:30:32 PM User: kgpeters

Figure 7-4 Site C Cross Section A-A'

U.S Army - TCAAP Arden Hills, Minnesota

	Upper Unit 1 Upper Unit 2		Geologic Contact (inferred where dashed)
—	Water Table	MW-3	Well ID
	Screened Interval	µg/L	Micrograms per Liter

 15 µg/L Dissolved Lead Concentration Contour (Groundwater Cleanup Level) dashed where inferred


1.6 Dissolved Lead (µg/L) – Summer 2018

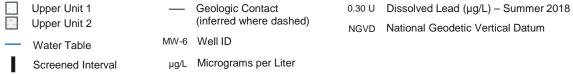
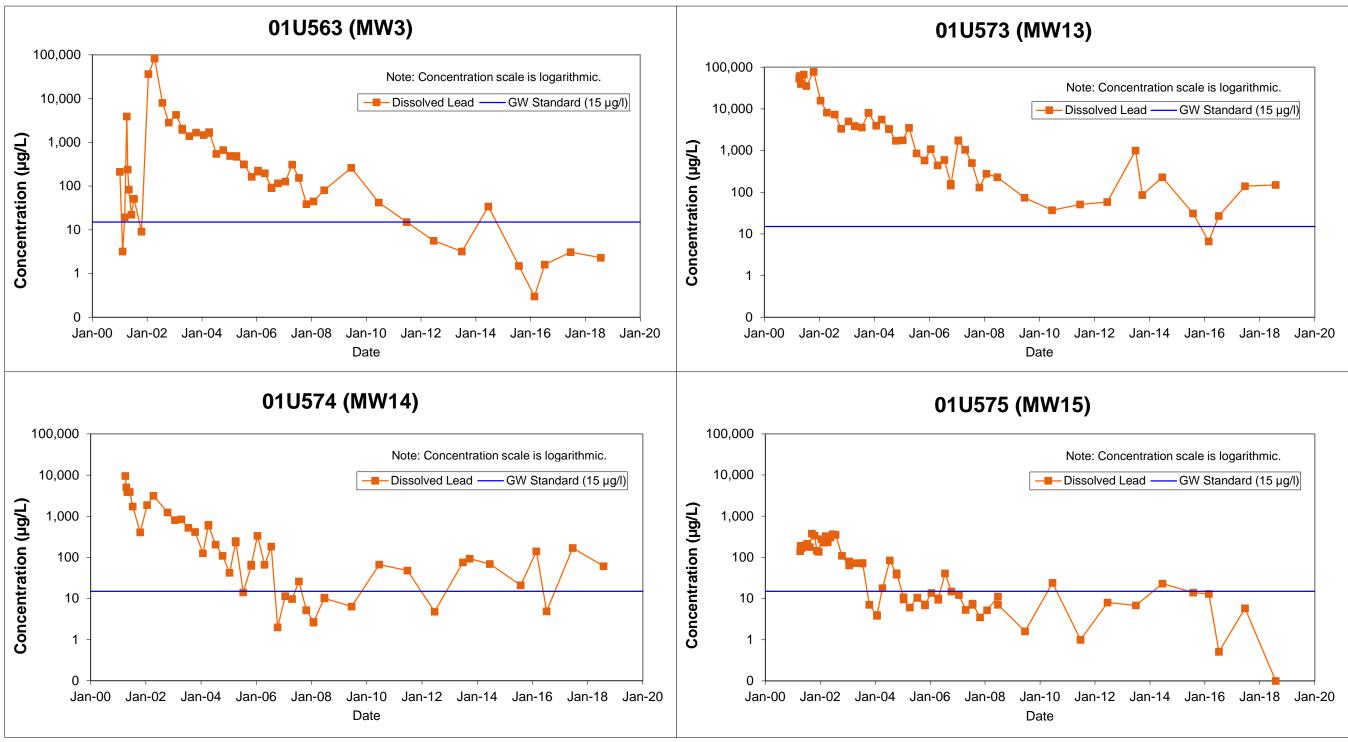
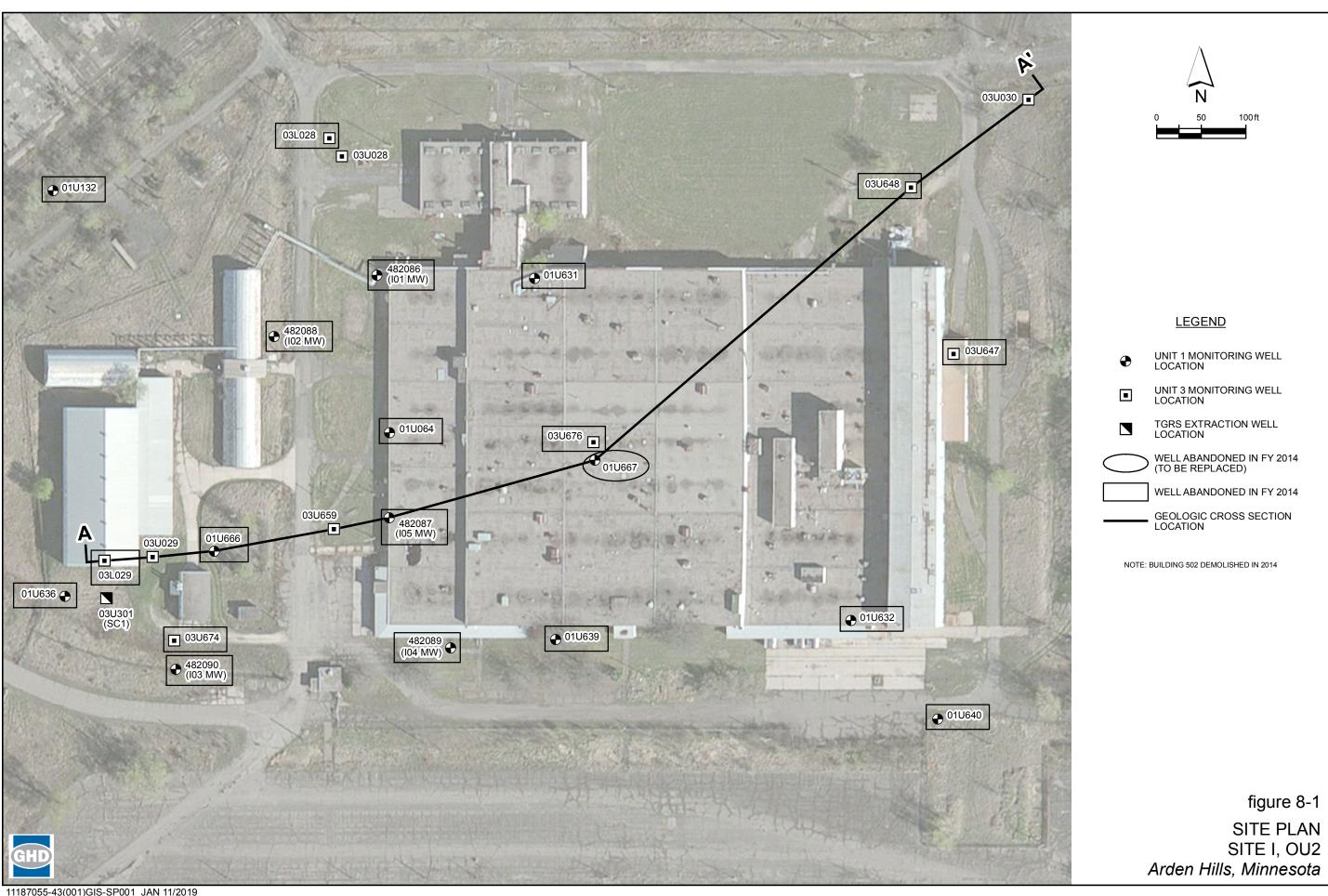

NGVD National Geodetic Vertical Datum

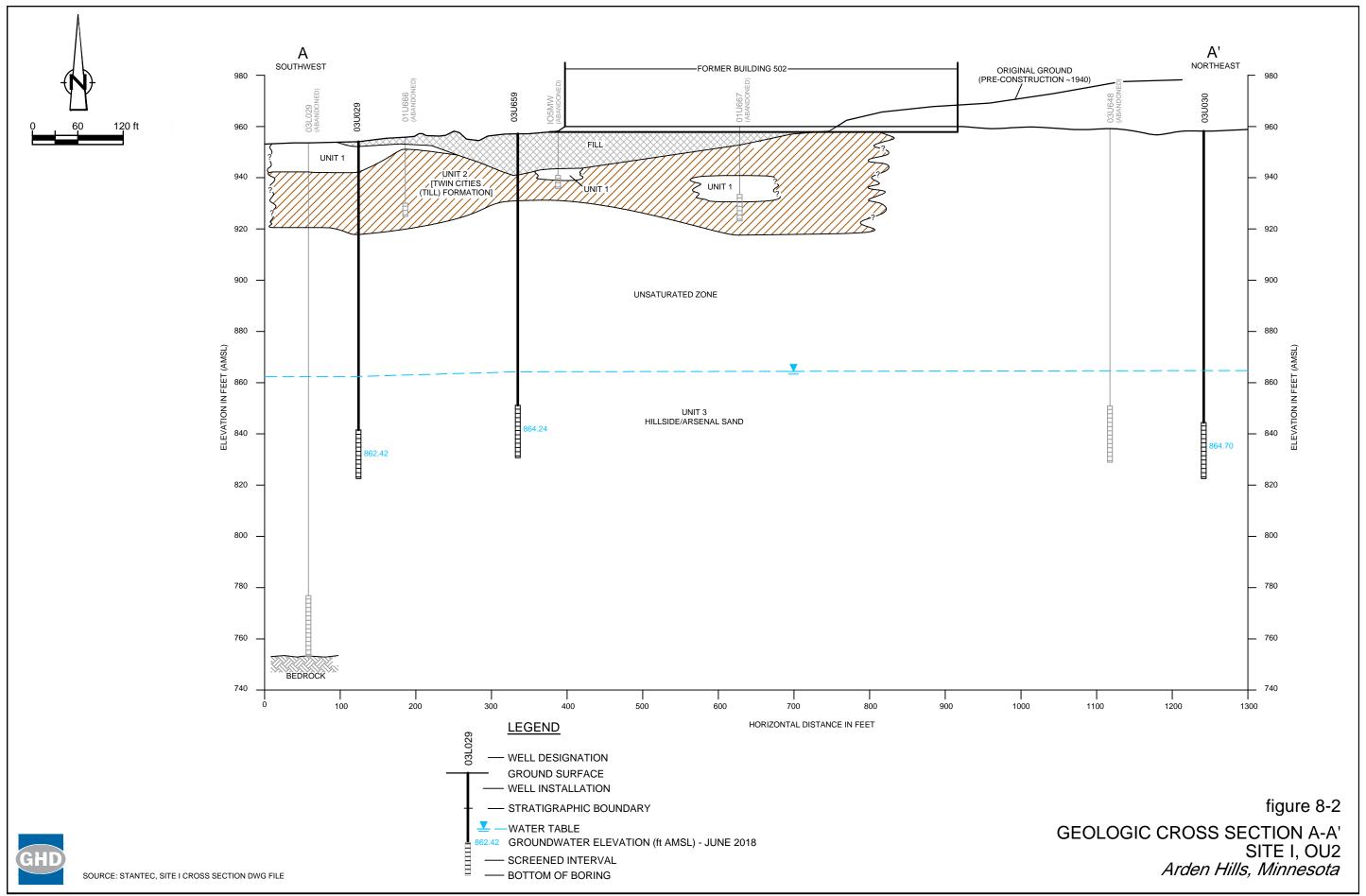
Figure 7-5 Site C Cross Section B-B'

U.S Army - TCAAP Arden Hills, Minnesota

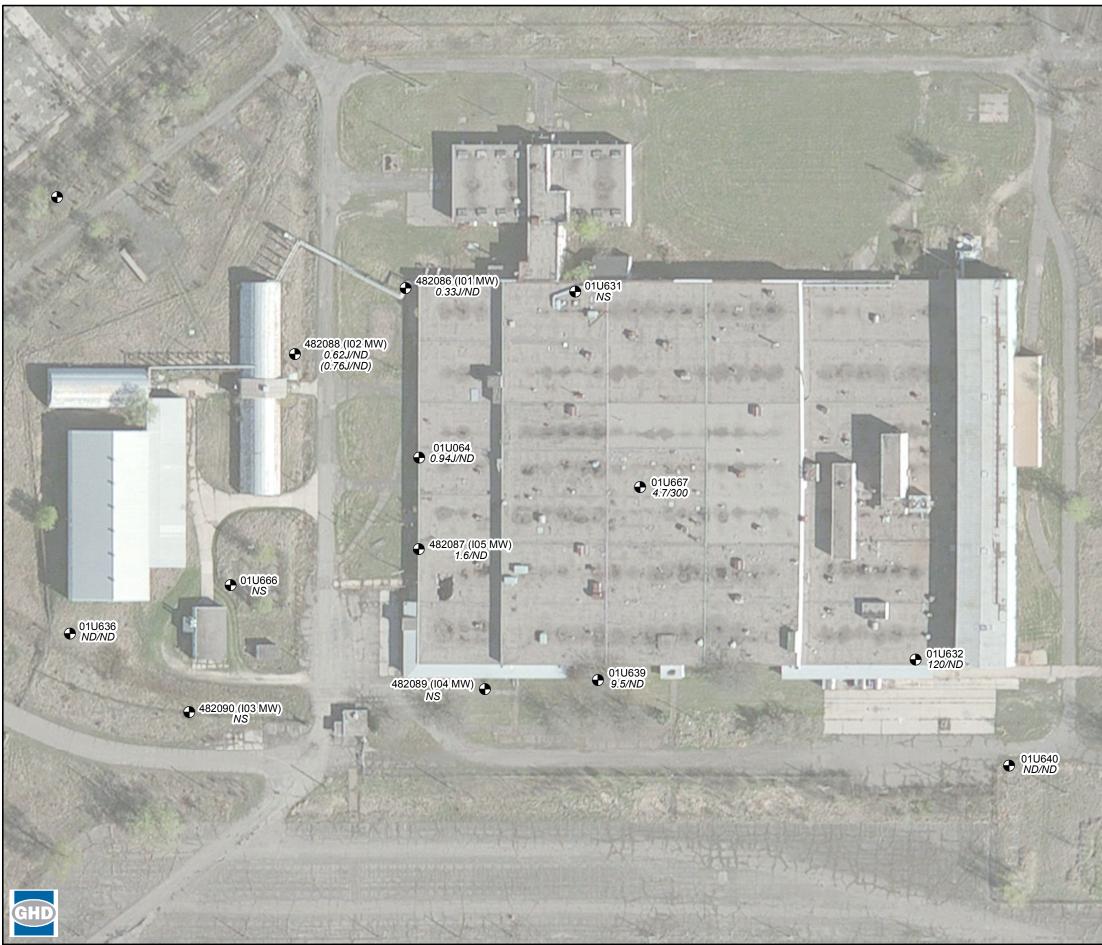



Figure 7-6 Dissolved Lead

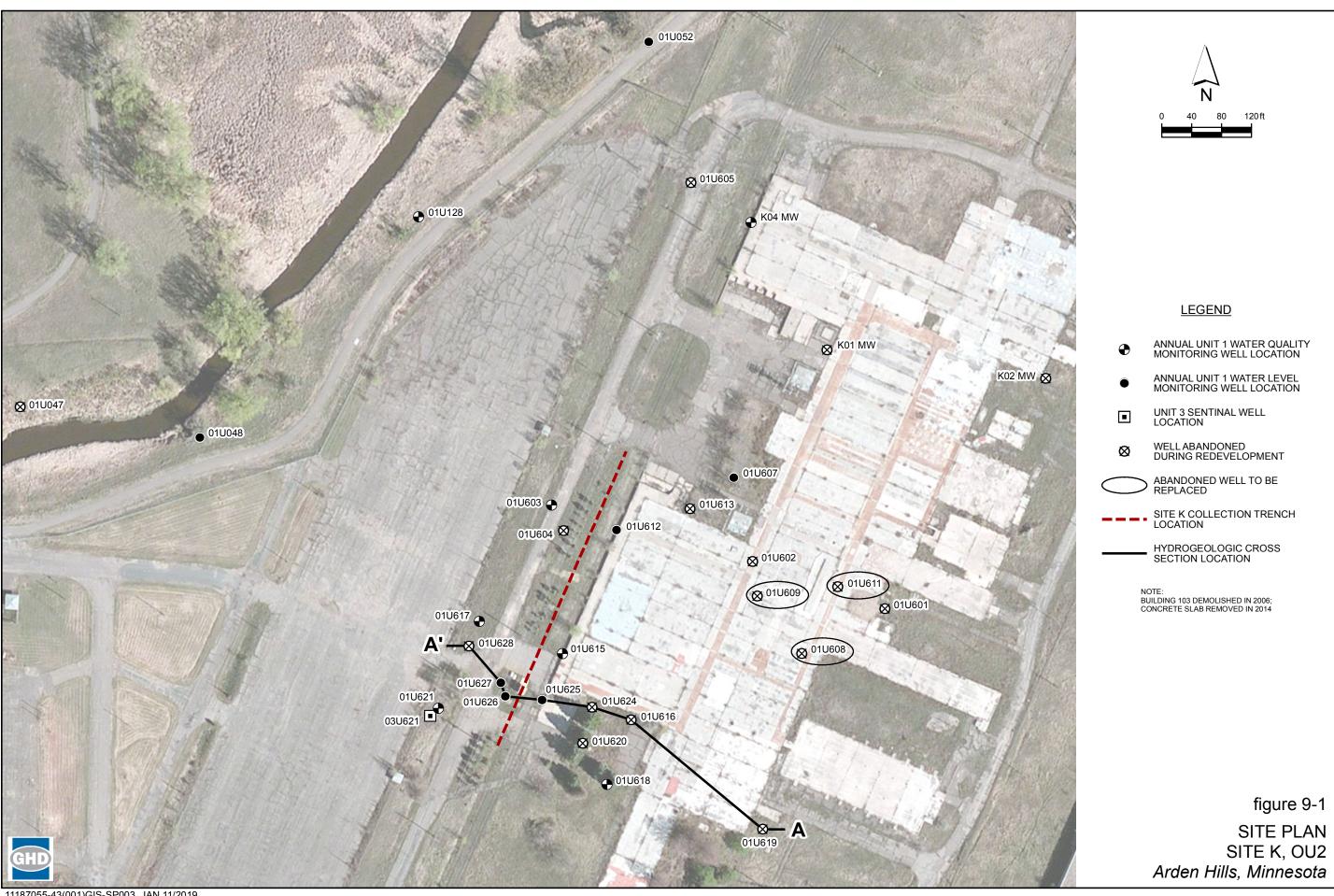
Twin Cities Army Ammunitions Plant Arden Hills, Minnesota



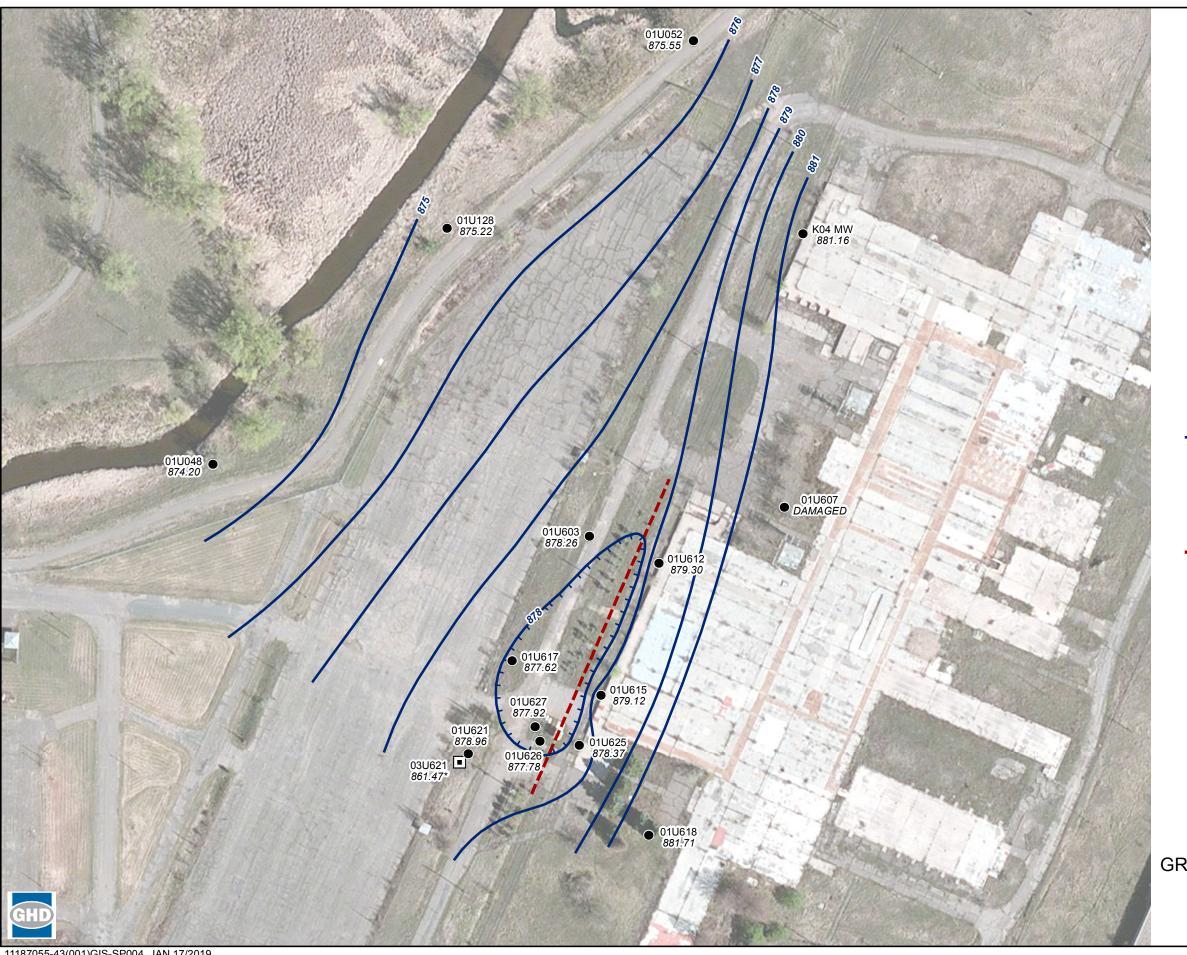
Acronyms and Abbreviations: MW = monitoring well $\mu g/L = micrograms per liter$



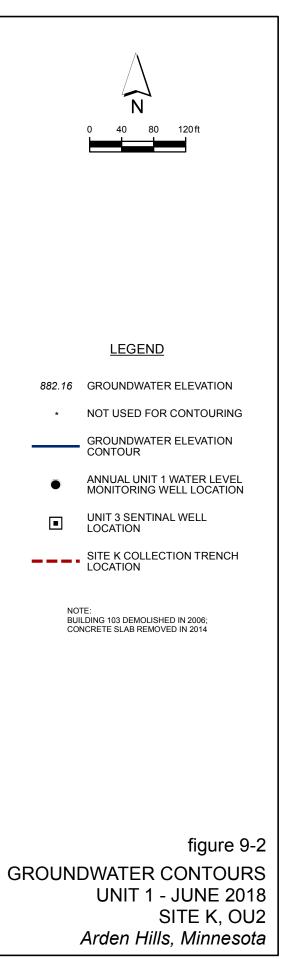
11187055-43(001)GIS-SP001 JAN 11/2019

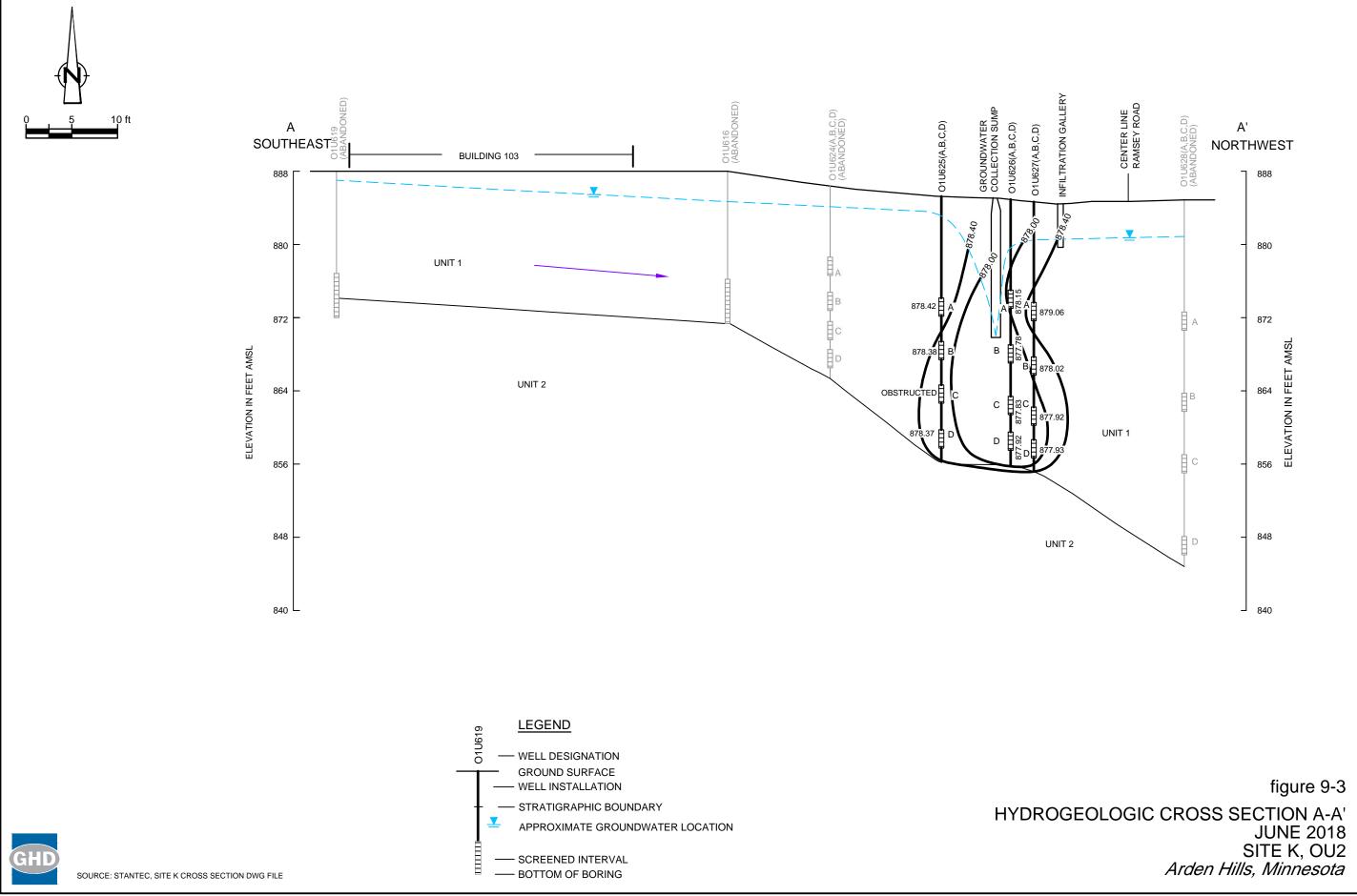


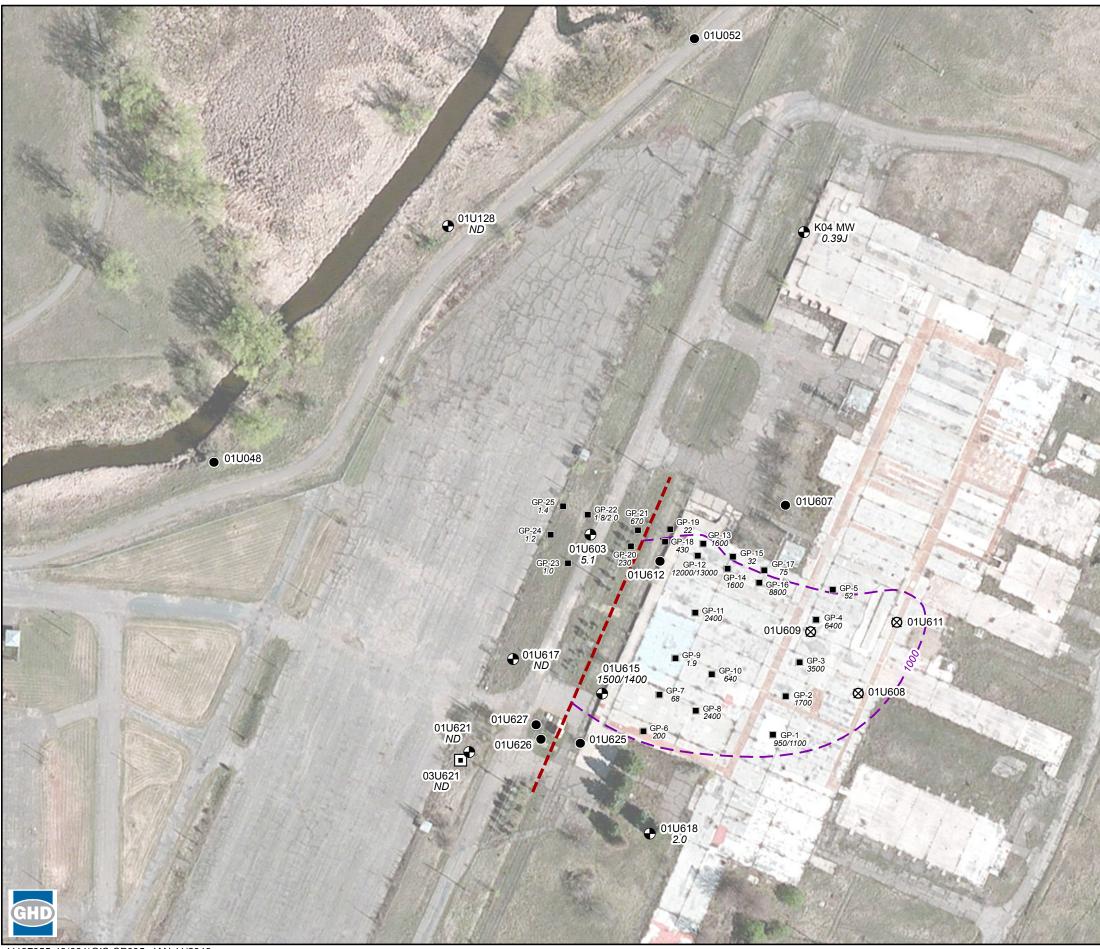
P:\drawings\11187050s\11187055-REPORT\11187055-43(001)\11187055-43(001)GN\11187055-43(001)GN\4001.DWG Plot Date: JAN 11, 2019

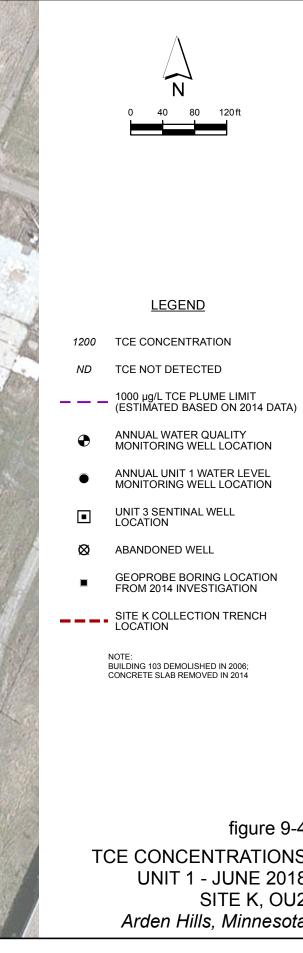


11187055-43(001)GIS-SP002 JAN 11/2019

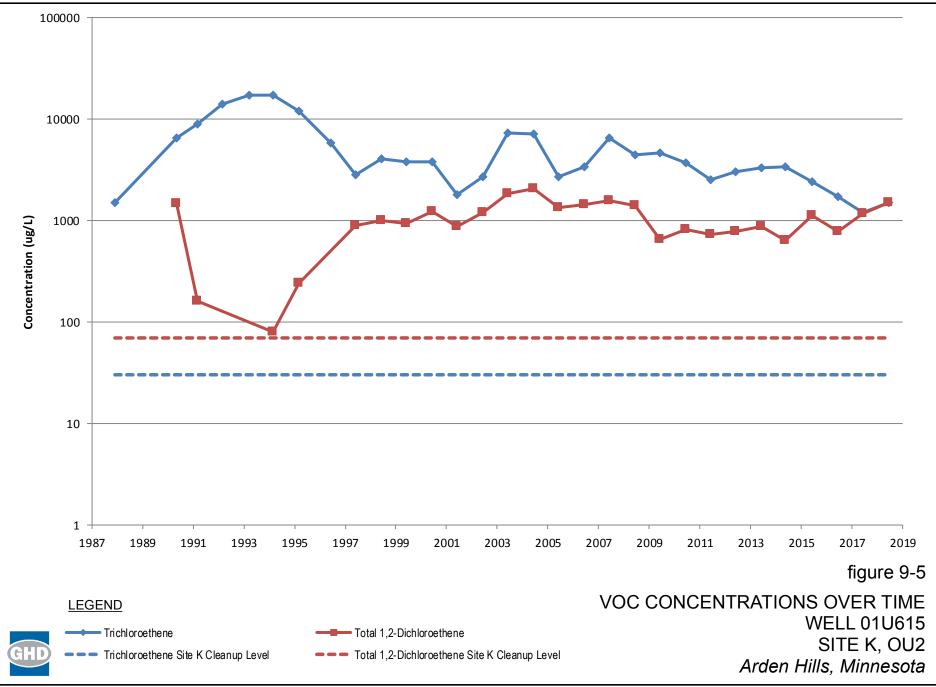





11187055-43(001)GIS-SP003 JAN 11/2019


11187055-43(001)GIS-SP004 JAN 17/2019

11187055-43(001)GIS-SP005 JAN 11/2019


GEOPROBE BORING LOCATION FROM 2014 INVESTIGATION SITE K COLLECTION TRENCH LOCATION

120 ft

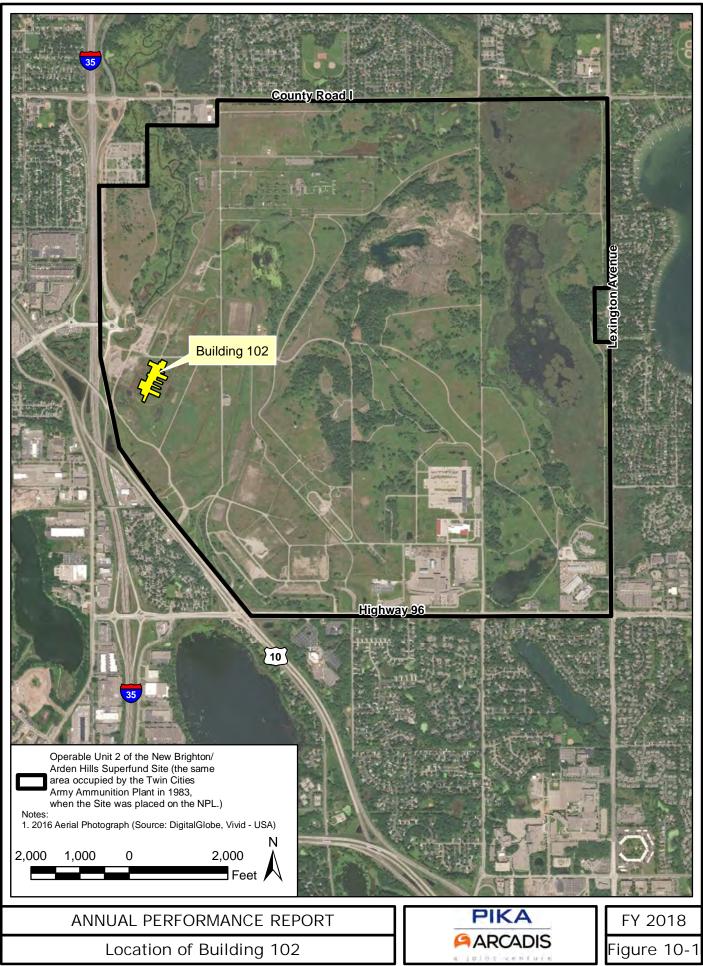
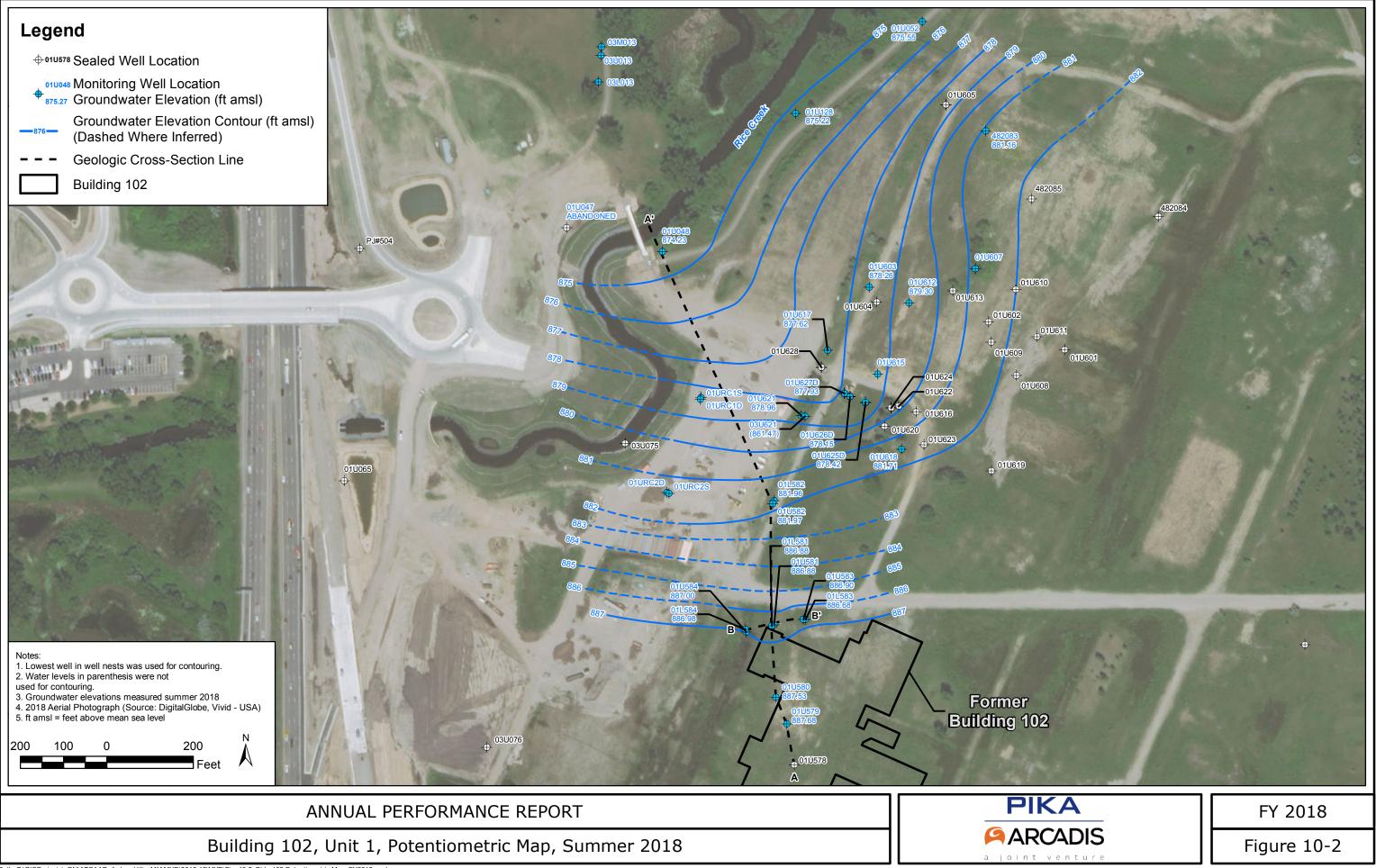
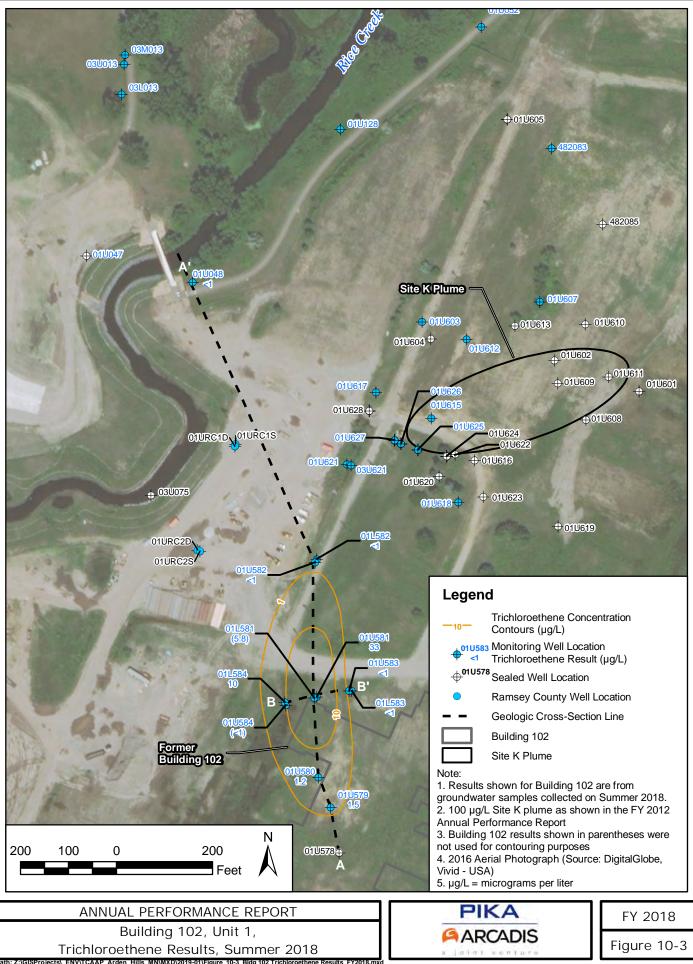
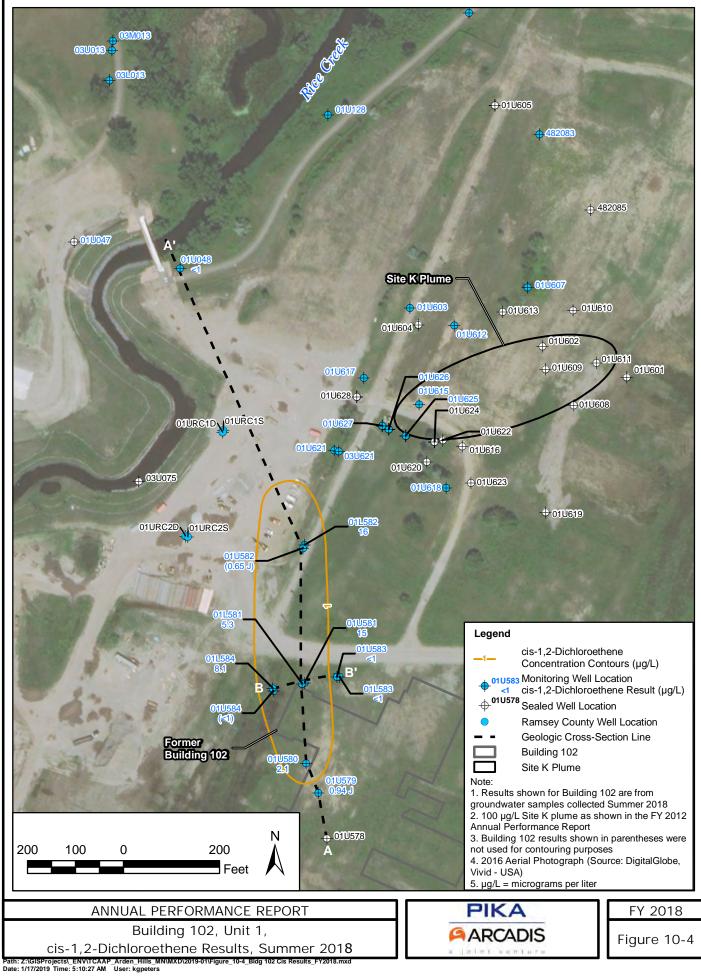

80

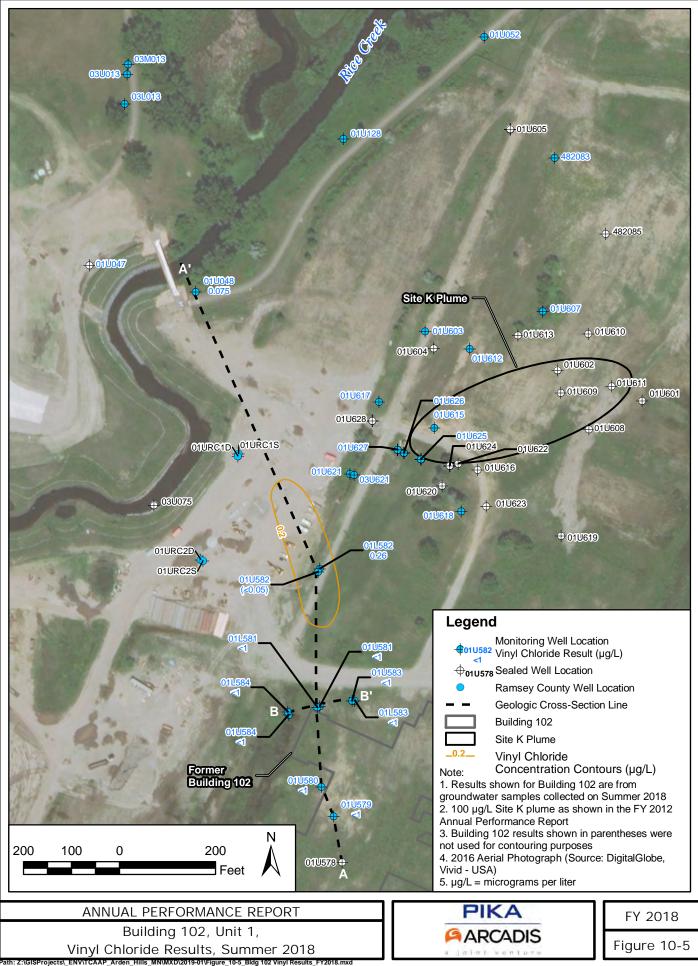
figure 9-4


TCE CONCENTRATIONS UNIT 1 - JUNE 2018 SITE K, OU2 Arden Hills, Minnesota

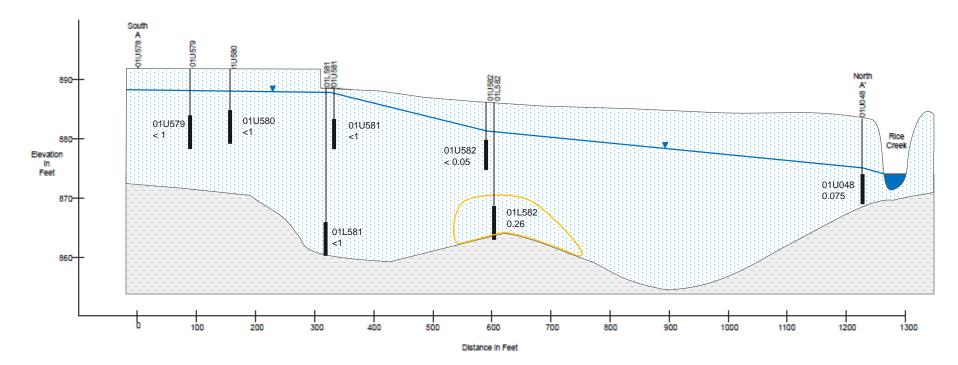


11187055-43(001)GIS-SP006 JAN 11/2019




Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2019-01\Figure_10-1_Bldg 102 Location Map_FY2018.mxd Date: 1/17/2019 Time: 4:04:46 AM User: kgpeters

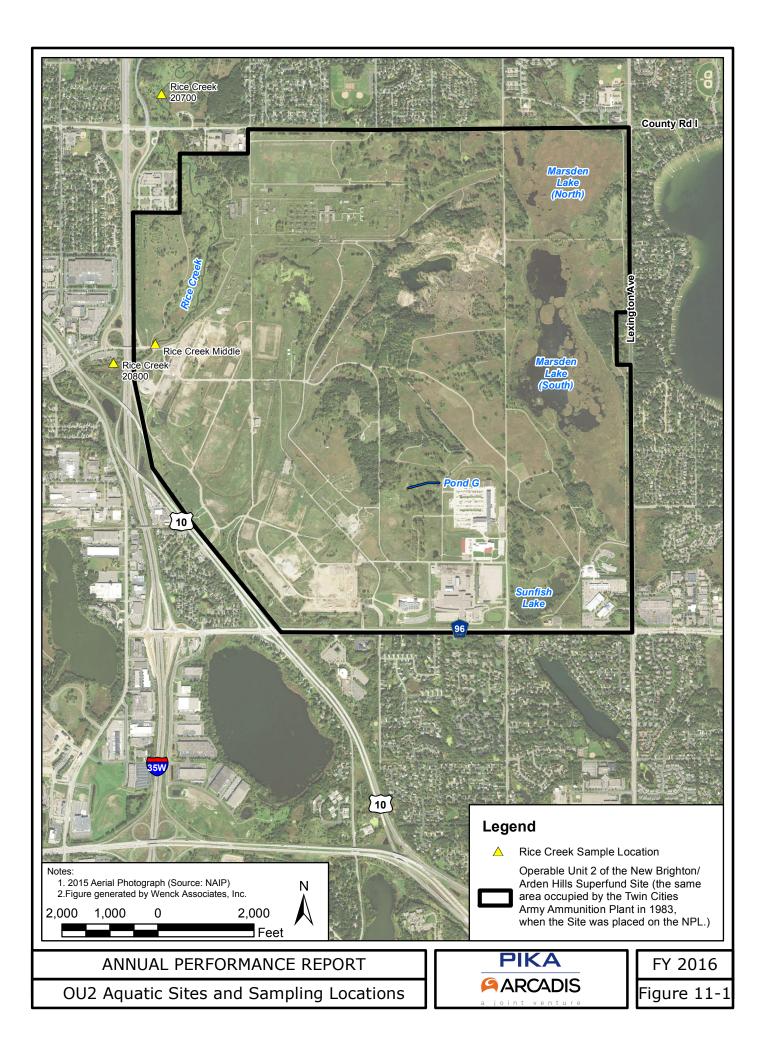
Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2019-01\Figure_10-3_E Date: 1/17/2019 Time: 5:12:08 AM User: kgpeters

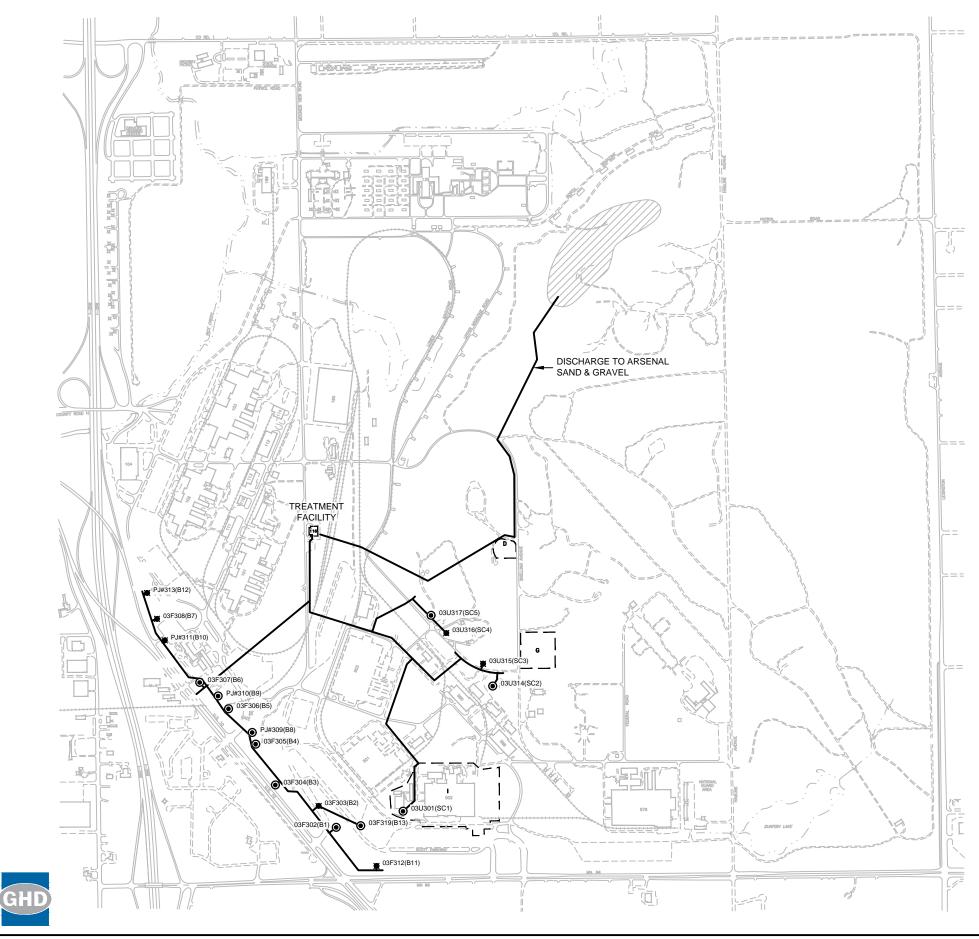


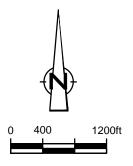
Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2019-01\ Date: 1/17/2019 Time: 4:59:47 AM User: kgpeters

Figure 10-6 Building 102, Vinyl Chloride Cross Section A-A'

U.S Army - TCAAP Arden Hills, Minnesota


Legend

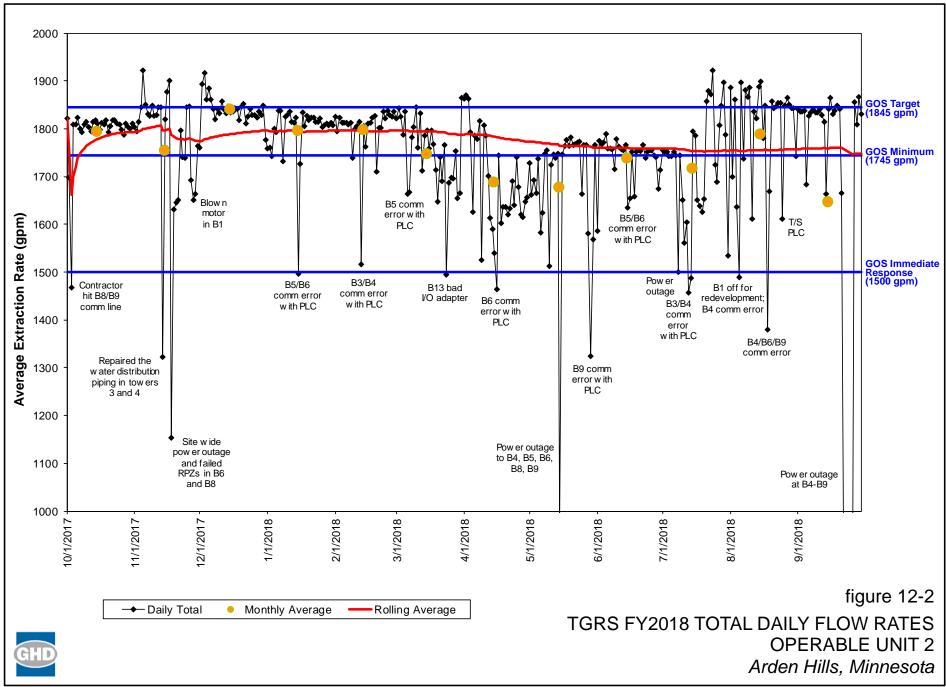

Fridley Formation


Twin Cities Formation

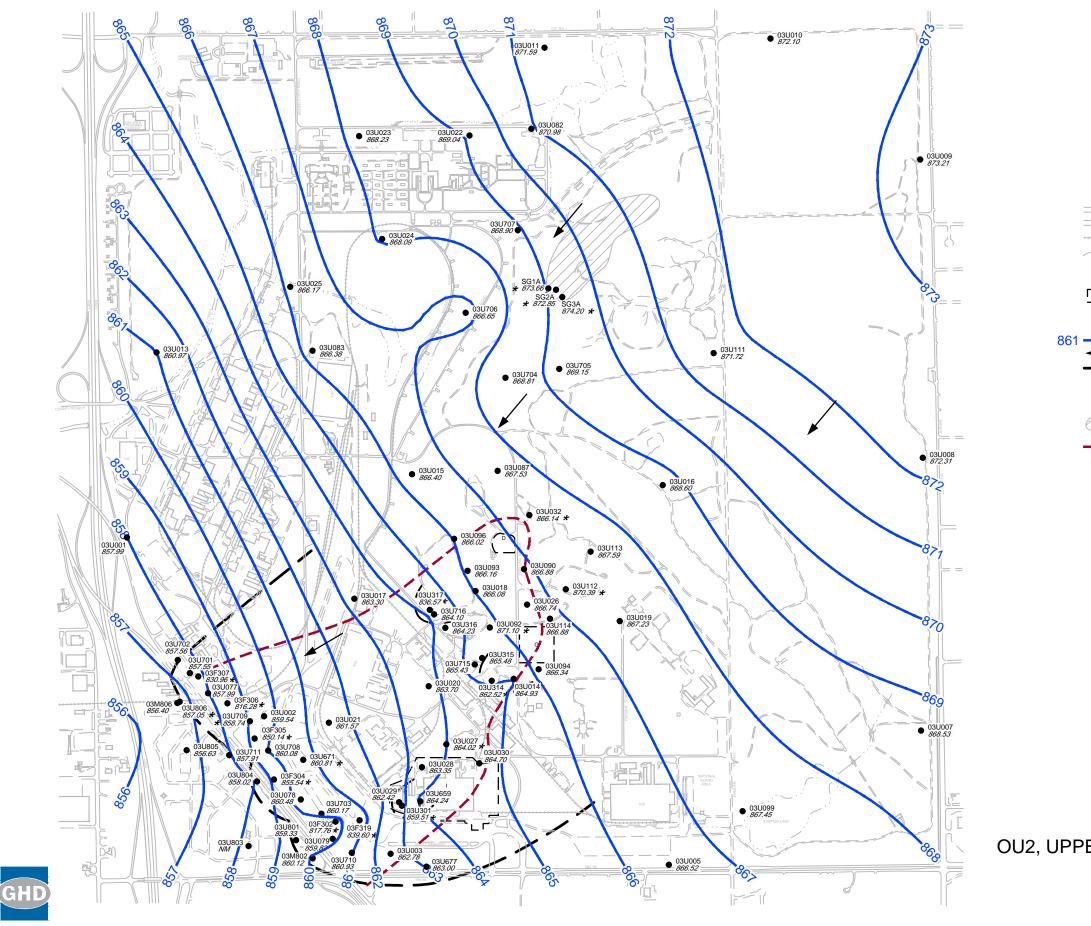
01U579 Monitoring Well ID

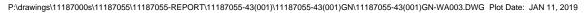
- 0.18 Vinyl Chloride Concentration (µg/L) (Summer 2018)
- Vinyl Chloride Concentration Contour (0.2 μg/L)
- Water Table

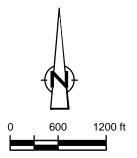
<u>LEGEND</u>



- INACTIVE EXTRACTION WELL LOCATION


EXTRACTION WELL NAME CROSS REFERENCE

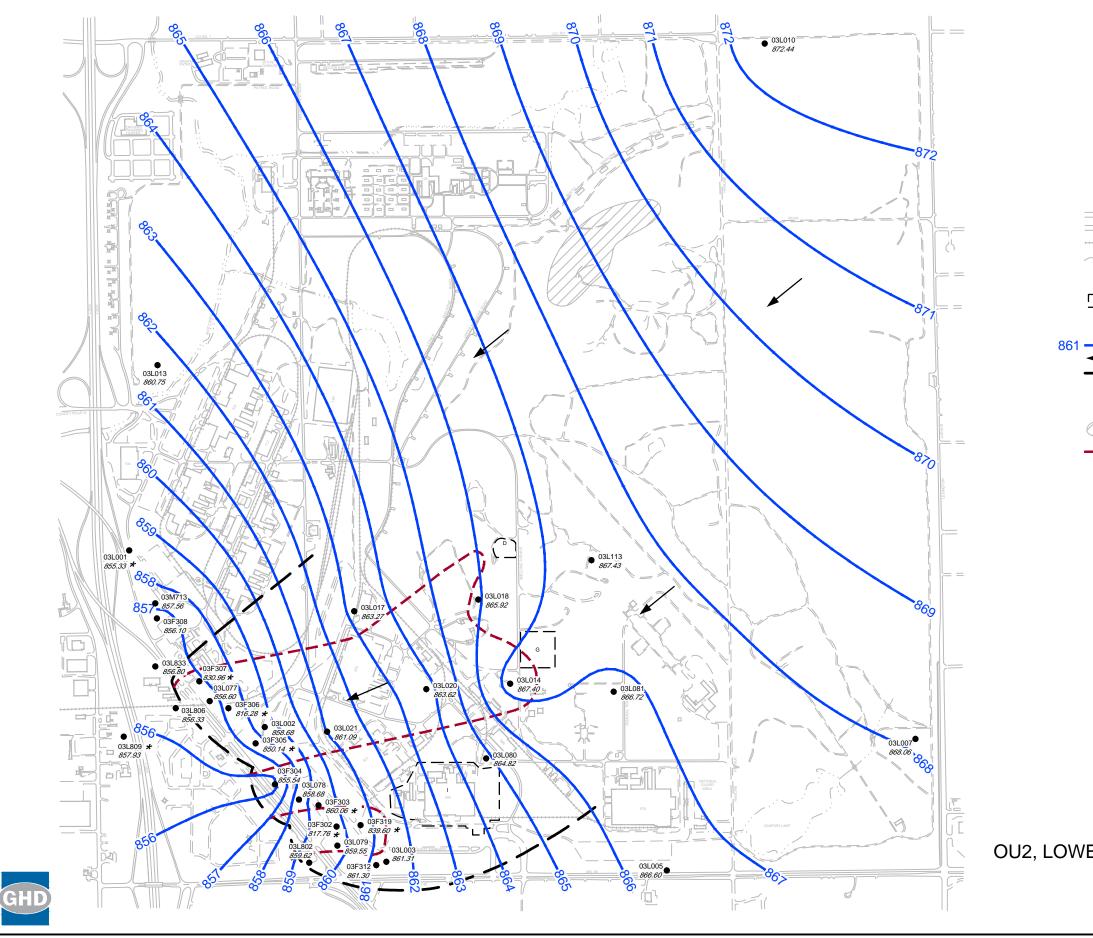

B1	03F302
B2	03F303
B3	03F304
B4	03F305
B5	03F306
B6	03F307
B7	03F308
B8	PJ#309
B9	PJ#310
B10	PJ#311
B11	03F312
B12	PJ#313
B13	03F319
SC1	03U301
SC2	03U314
SC3	03U315
SC4	03U316
SC5	03U317

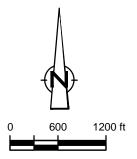

figure 12-1 TGRS LAYOUT OPERABLE UNIT 2 *Arden Hills, Minnesota*

¹¹¹⁸⁷⁰⁵⁵⁻⁴³⁽⁰⁰¹⁾GIS-SP007 JAN 11/2019

LEGEND

PRIMARY ROAD SECONDARY ROAD RAILROAD DRAINAGE BUILDING BUILDING REMOVED SOURCE AREA WELL LOCATION GROUNDWATER ELEVATION IN FEET AMSL GROUNDWATER CONTOUR DIRECTION OF GROUNDWATER FLOW LIMIT OF CAPTURE NOTE: GROUNDWATER CONTOURS ARE INTERPOLATED FROM THE DATA POINTS SHOWN. GROUNDWATER ELEVATION NOT USED IN CONTOURING ARSENAL SAND AND GRAVEL PIT TREATED WATER DISCHARGE AREA. (APPROXIMATE BOUNDARIES)


- 5 μg/L TCE PLUME BOUNDARY


EXTRACTION WELL NAME CROSS REFERENCE

B1	03F302
B2	03F303
B3	03F304
B4	03F305
B5	03F306
B6	03F307
B7	03F308
B8	PJ#309
B9	PJ#310
B10	PJ#311
B11	03F312
B12	PJ#313
B13	03F319
SC1	03U301
SC2	03U314
SC3	03U315
SC4	03U316
SC5	03U317

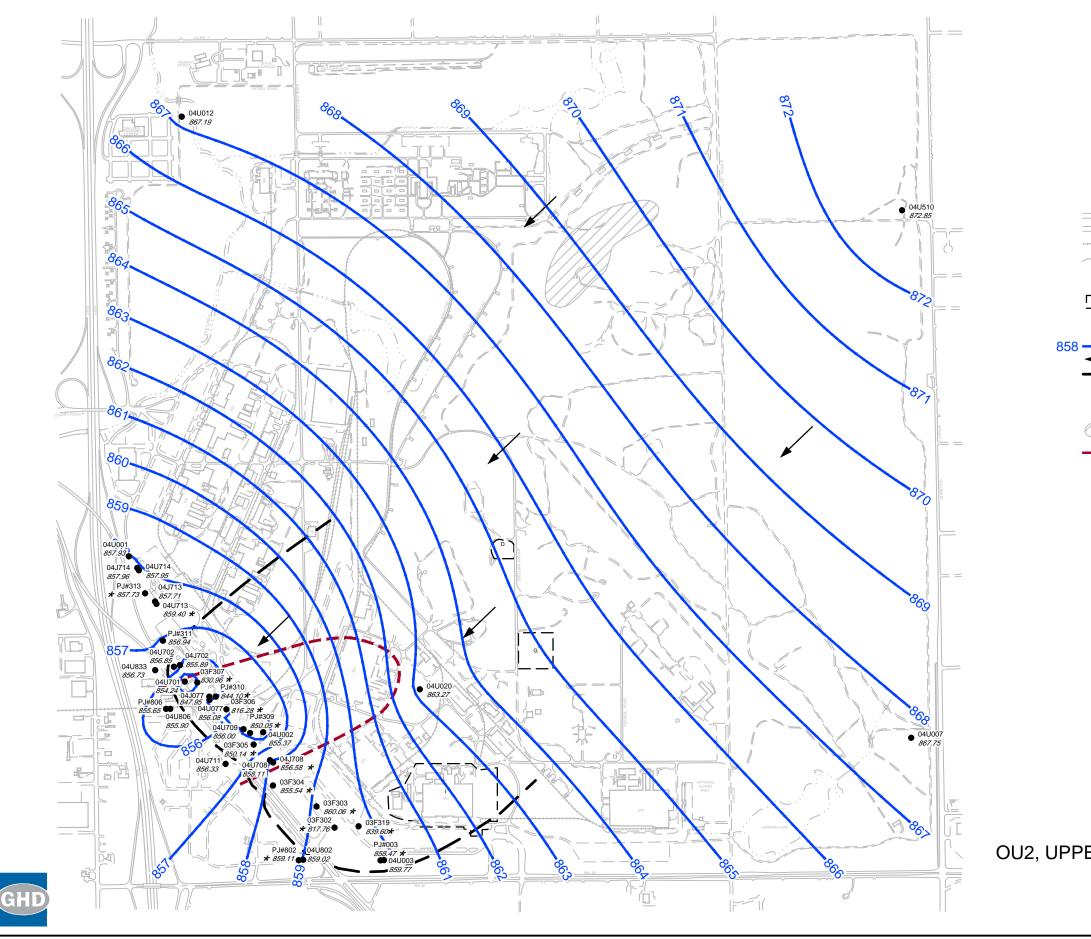
figure 12-3

OU2, UPPER UNIT 3, POTENTIOMETRIC MAP JUNE 2018 OPERABLE UNIT 2 Arden Hills, Minnesota

LEGEND

_

PRIMARY ROAD SECONDARY ROAD RAILROAD DRAINAGE BUILDING BUILDING REMOVED SOURCE AREA WELL LOCATION GROUNDWATER ELEVATION IN FEET AMSL GROUNDWATER CONTOUR DIRECTION OF GROUNDWATER FLOW LIMIT OF CAPTURE NOTE: GROUNDWATER CONTOURS ARE INTERPOLATED FROM THE DATA POINTS SHOWN. GROUNDWATER ELEVATION NOT USED IN CONTOURING ARSENAL SAND AND GRAVEL PIT TREATED WATER DISCHARGE AREA. (APPROXIMATE BOUNDARIES)


EXTRACTION WELL NAME CROSS REFERENCE


____ 5 μg/L TCE PLUME BOUNDARY

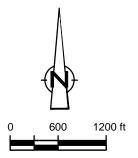

B1	03F302
B2	03F303
B3	03F304
B4	03F305
B5	03F306
B6	03F307
B7	03F308
B8	PJ#309
В9	PJ#310
B10	PJ#311
B11	03F312
B12	PJ#313
B13	03F319
SC1	03U301
SC2	03U314
SC3	03U315
SC4	03U316
SC5	03U317

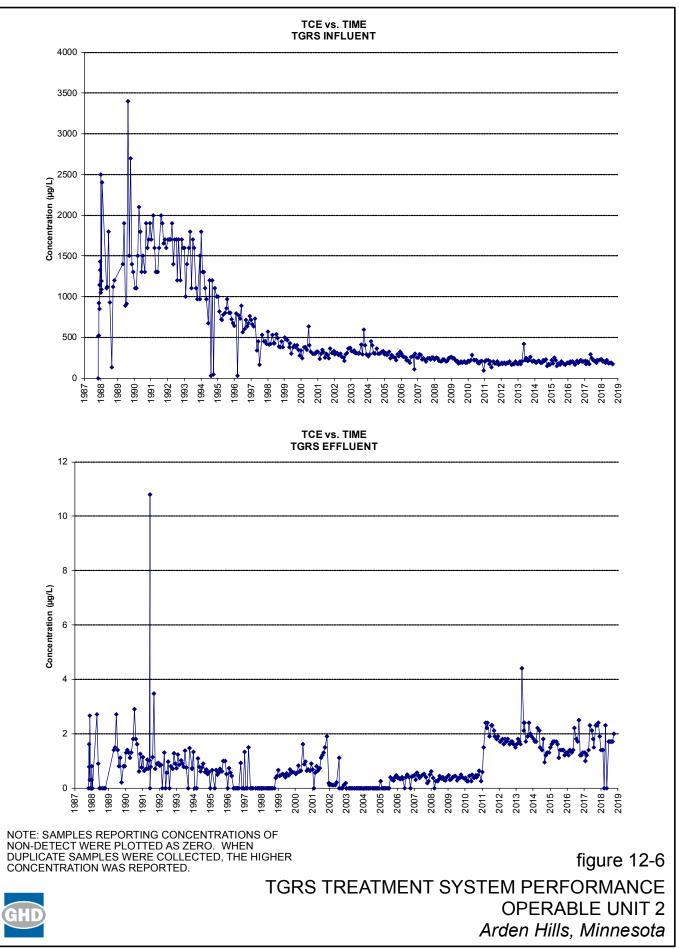
figure 12-4

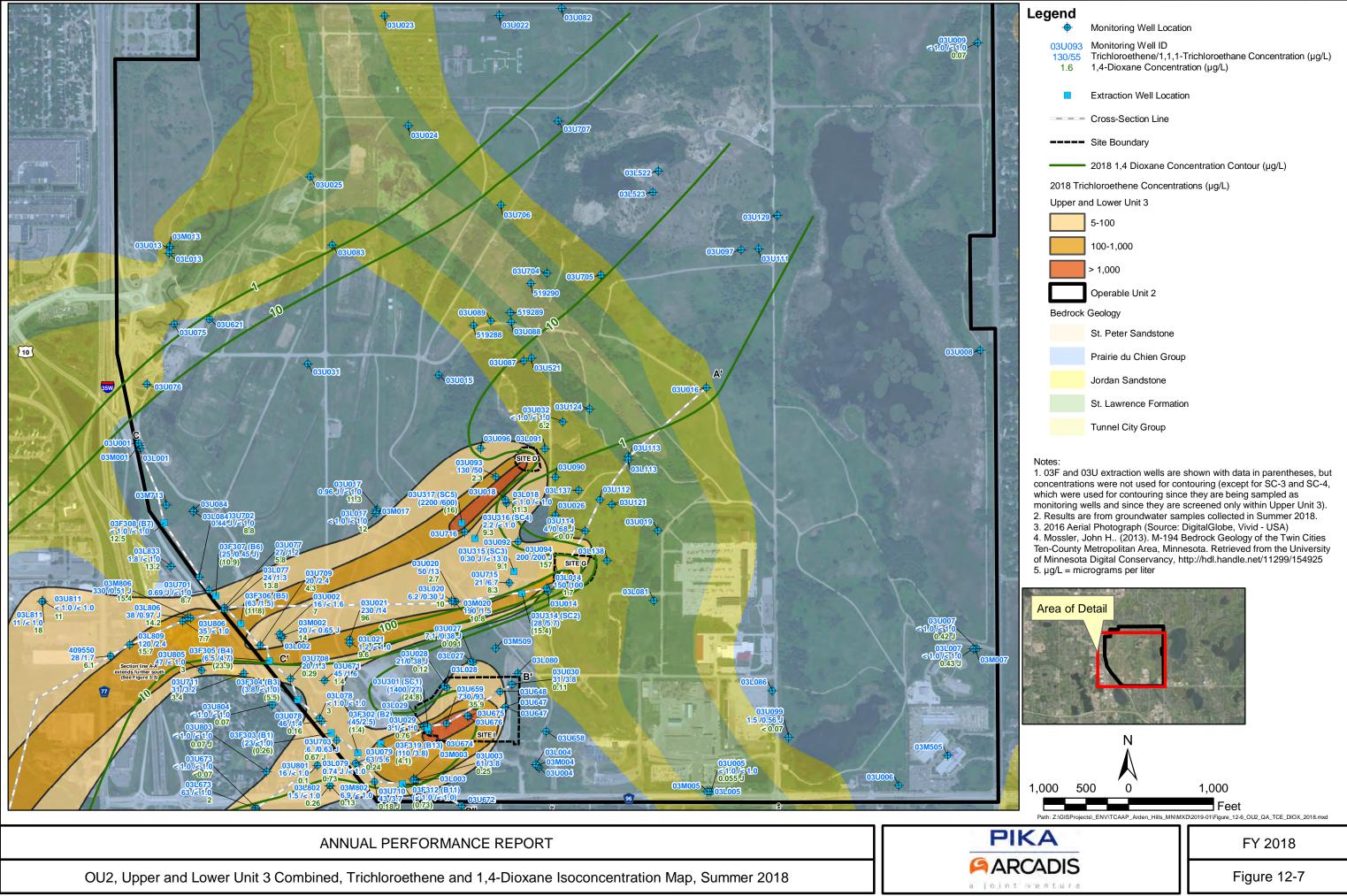
OU2, LOWER UNIT 3, POTENTIOMETRIC MAP JUNE 2018 OPERABLE UNIT 2 *Arden Hills, Minnesota*

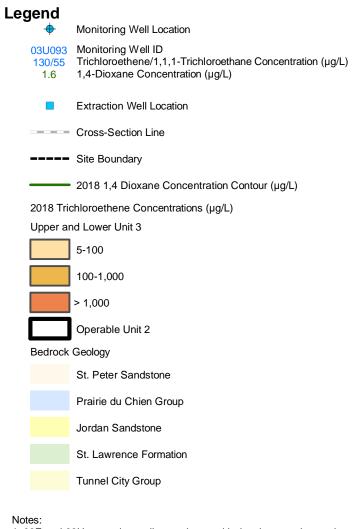
LEGEND

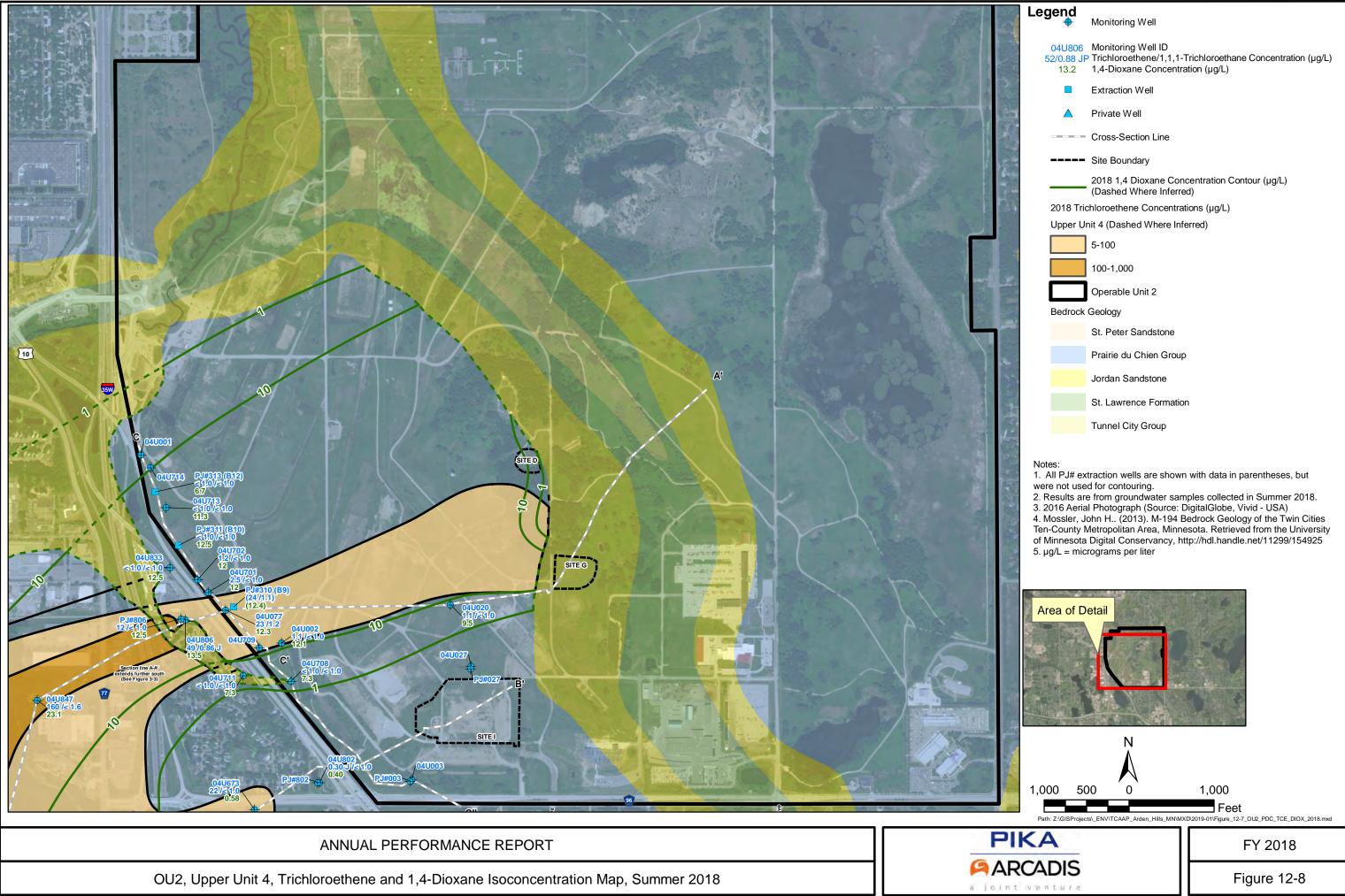
-

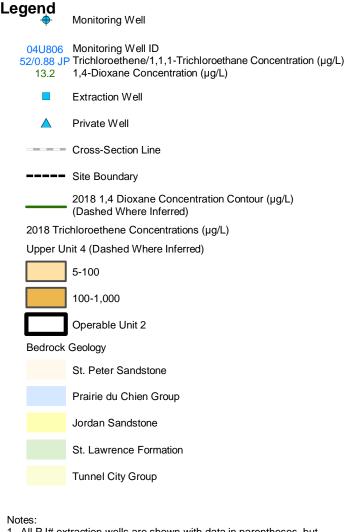
PRIMARY ROAD SECONDARY ROAD RAILROAD DRAINAGE BUILDING BUILDING REMOVED SOURCE AREA WELL LOCATION GROUNDWATER ELEVATION IN FEET AMSL GROUNDWATER CONTOUR DIRECTION OF GROUNDWATER FLOW LIMIT OF CAPTURE NOTE: GROUNDWATER CONTOURS ARE INTERPOLATED FROM THE DATA POINTS SHOWN. GROUNDWATER ELEVATION NOT USED IN CONTOURING ARSENAL SAND AND GRAVEL PIT TREATED WATER DISCHARGE AREA. (APPROXIMATE BOUNDARIES)

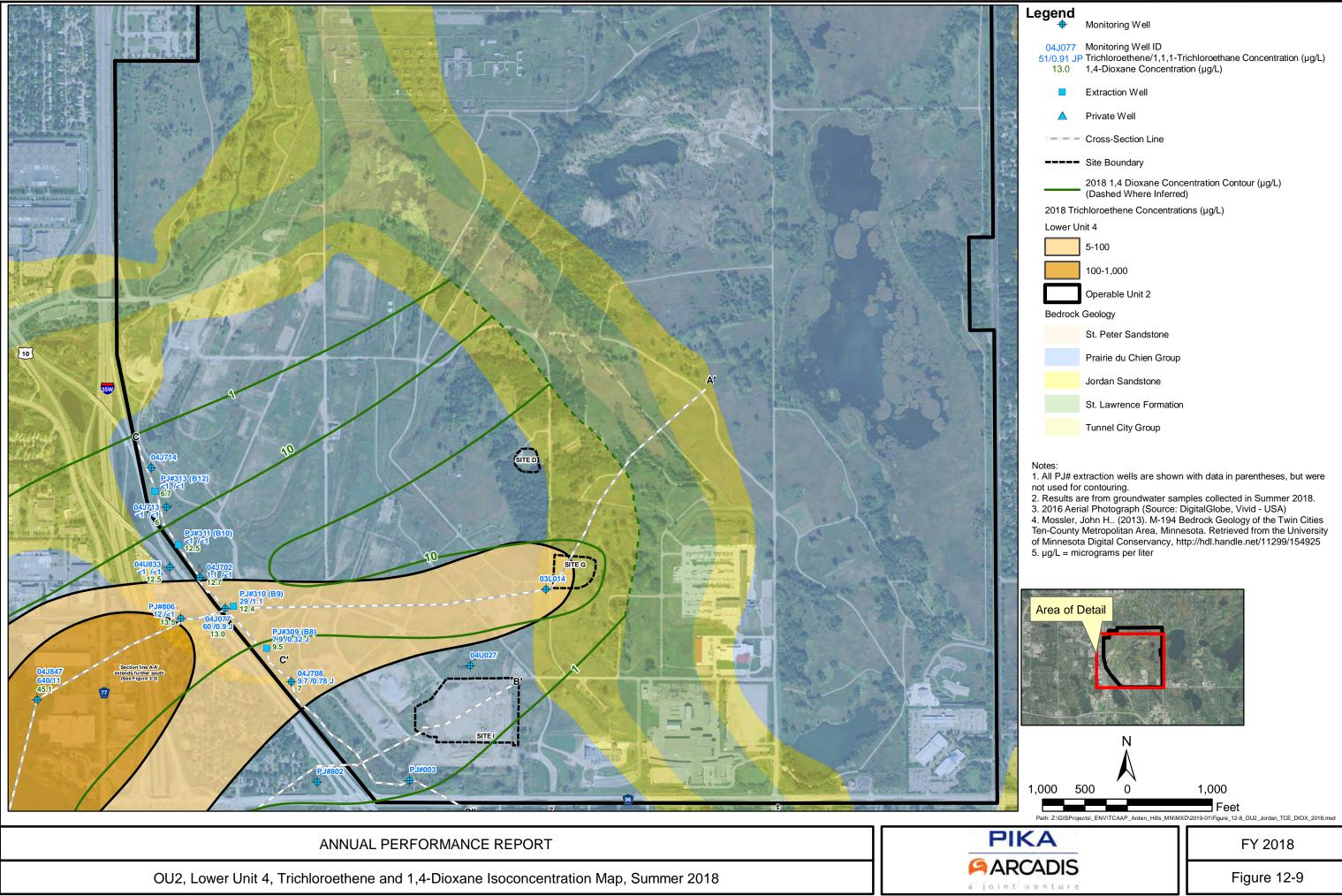

____ 5 μg/L TCE PLUME BOUNDARY

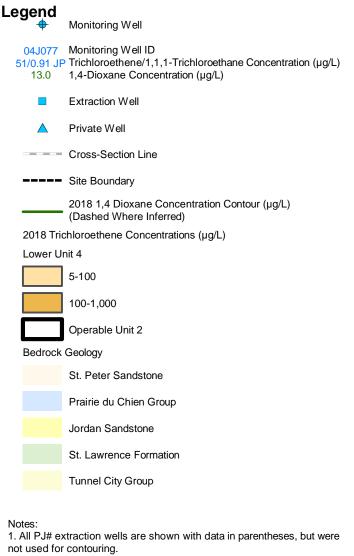

EXTRACTION WELL NAME CROSS REFERENCE

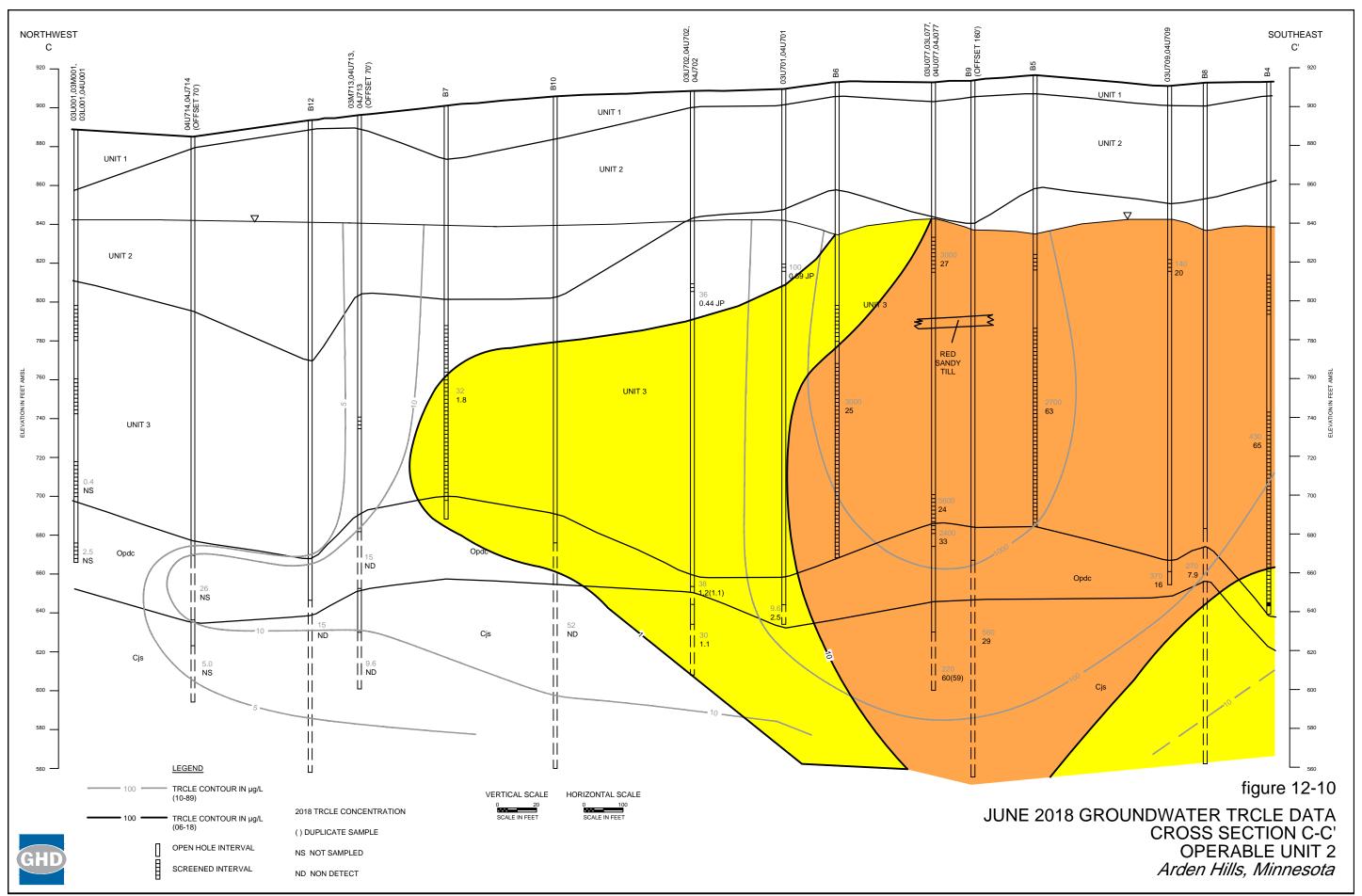

B1	03F302
B2	03F303
B3	03F304
B4	03F305
B5	03F306
B6	03F307
B7	03F308
B8	PJ#309
B9	PJ#310
B10	PJ#311
B11	03F312
B12	PJ#313
B13	03F319
SC1	03U301
SC2	03U314
SC3	03U315
SC4	03U316
SC5	03U317

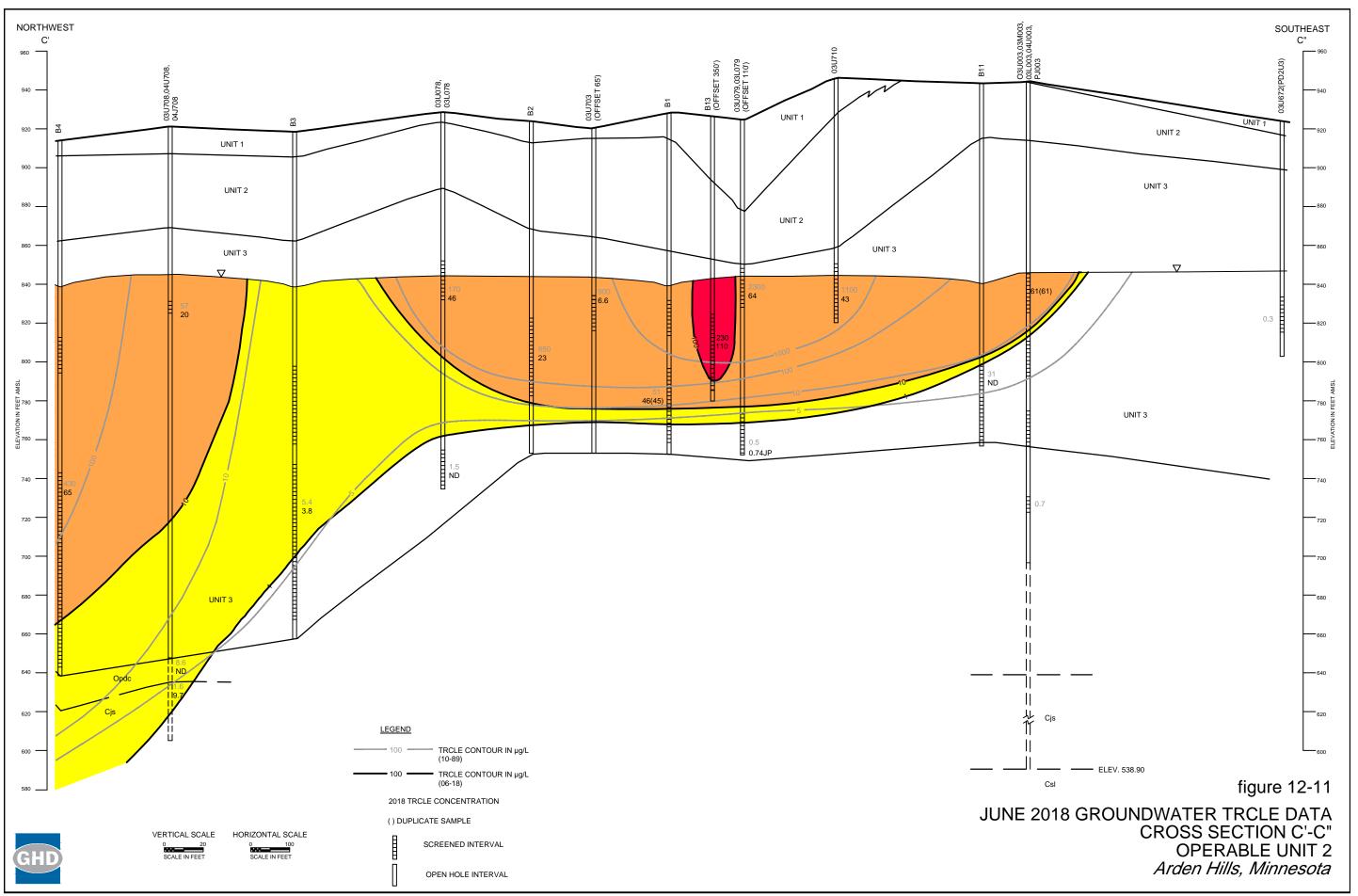

figure 12-5

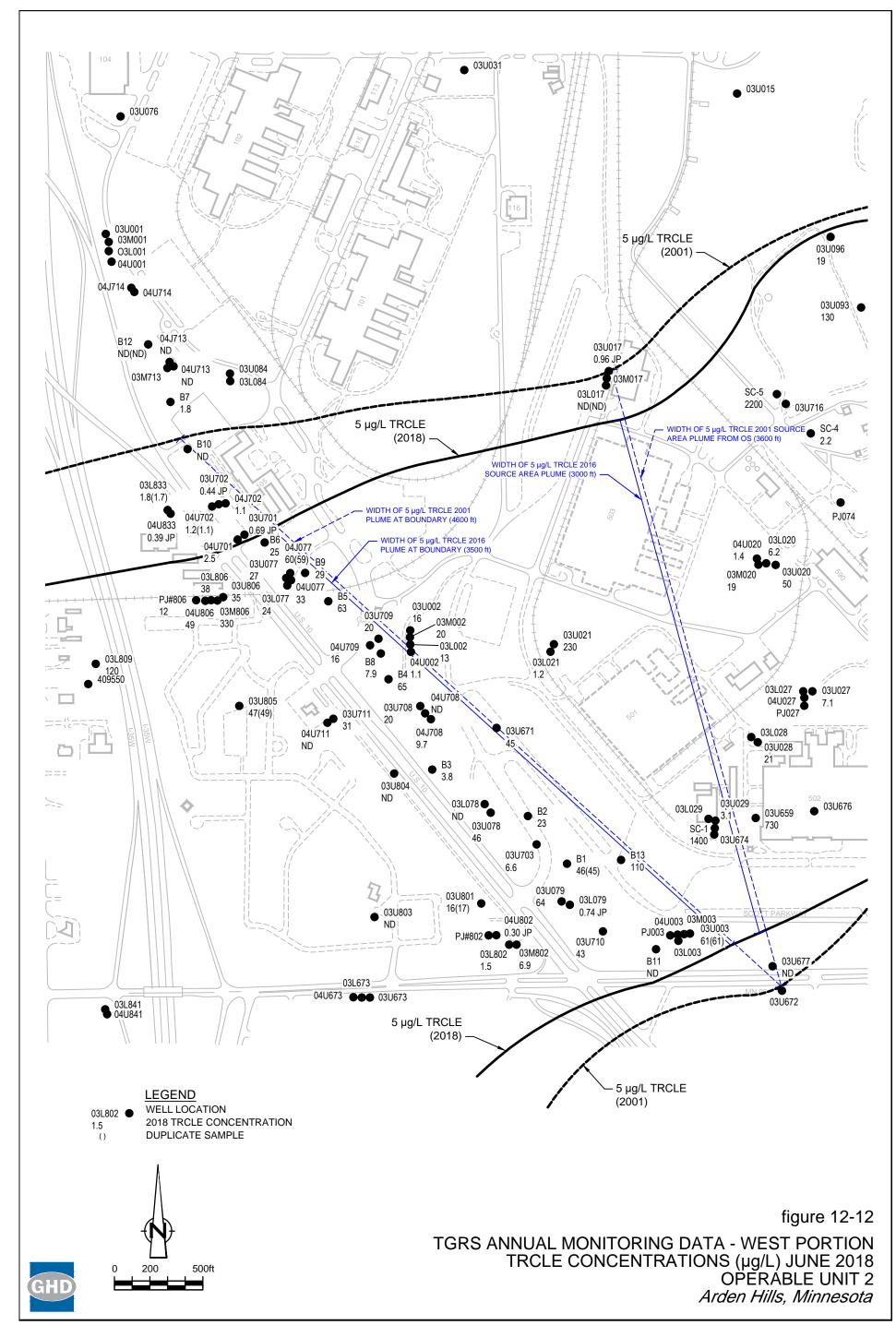

OU2, UPPER UNIT 4, POTENTIOMETRIC MAP JUNE 2018 OPERABLE UNIT 2 Arden Hills, Minnesota

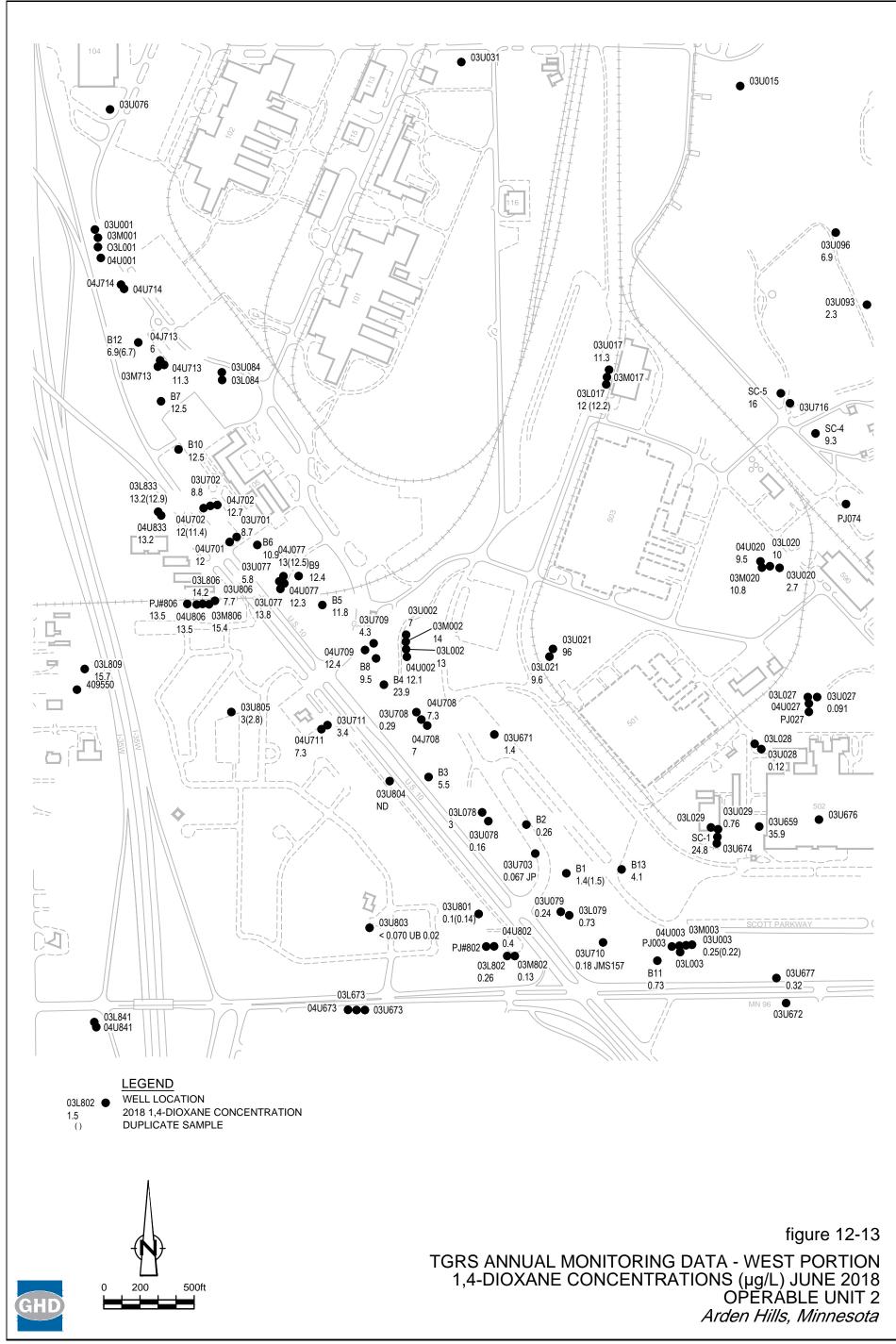


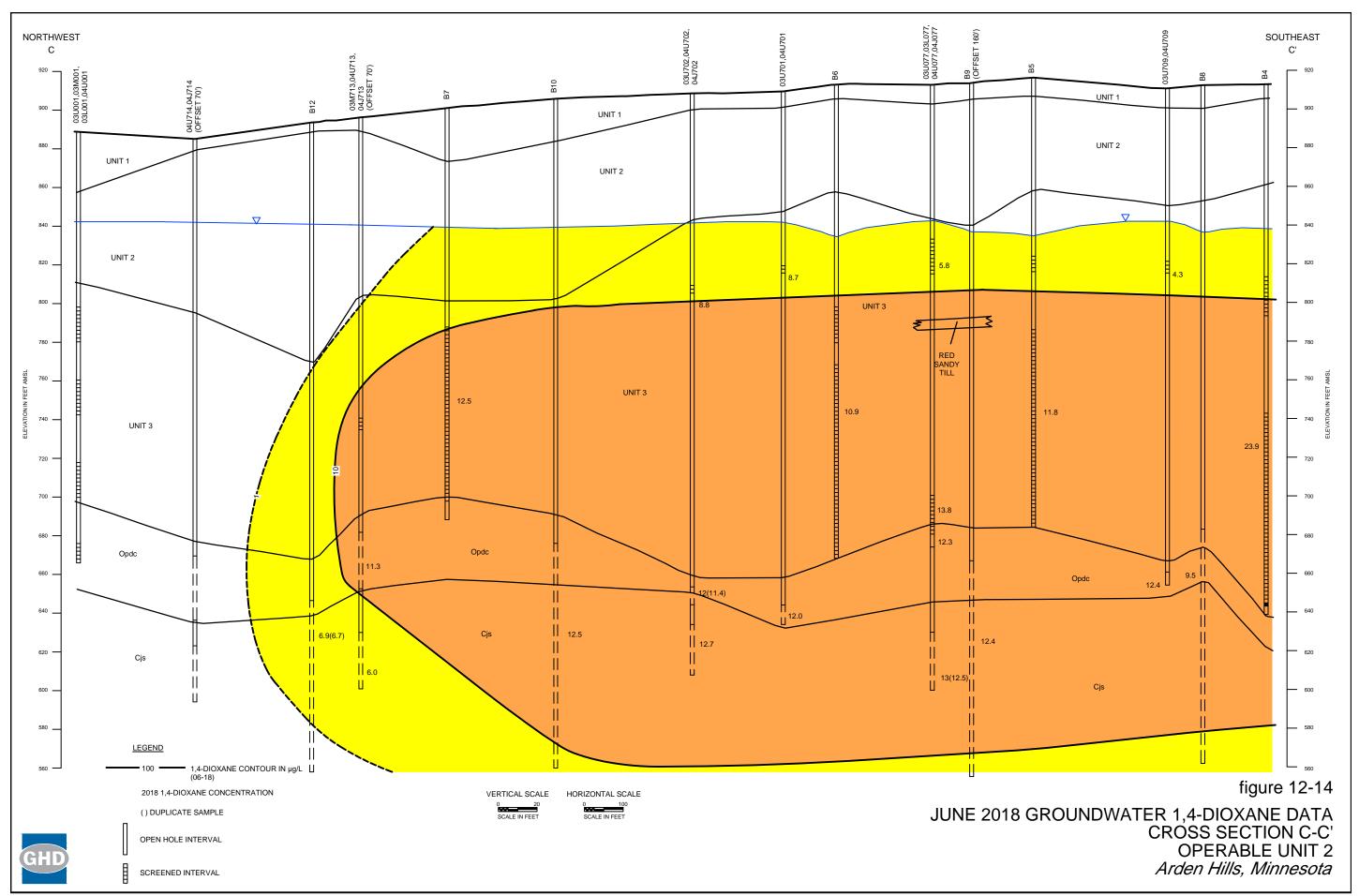


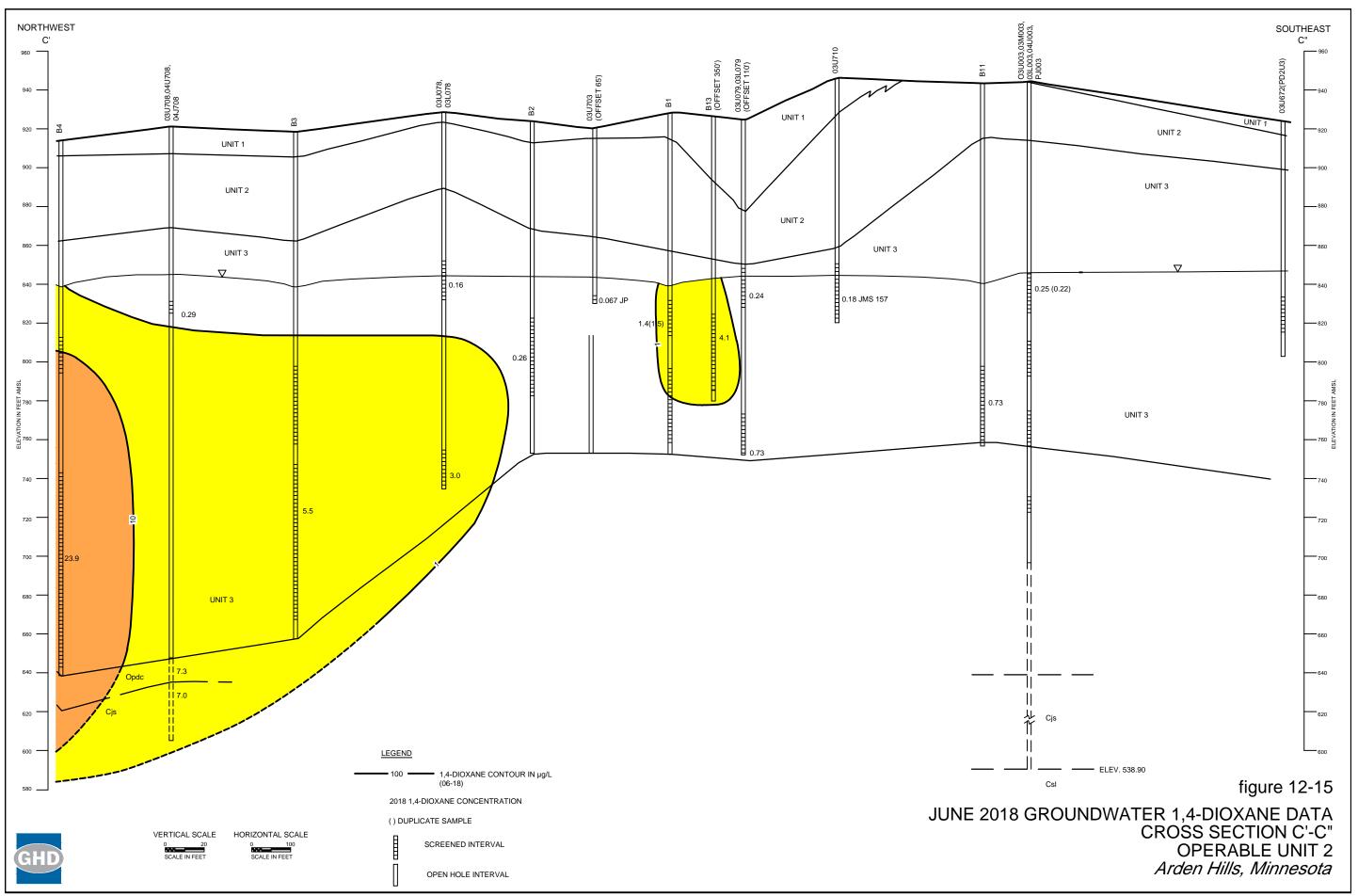




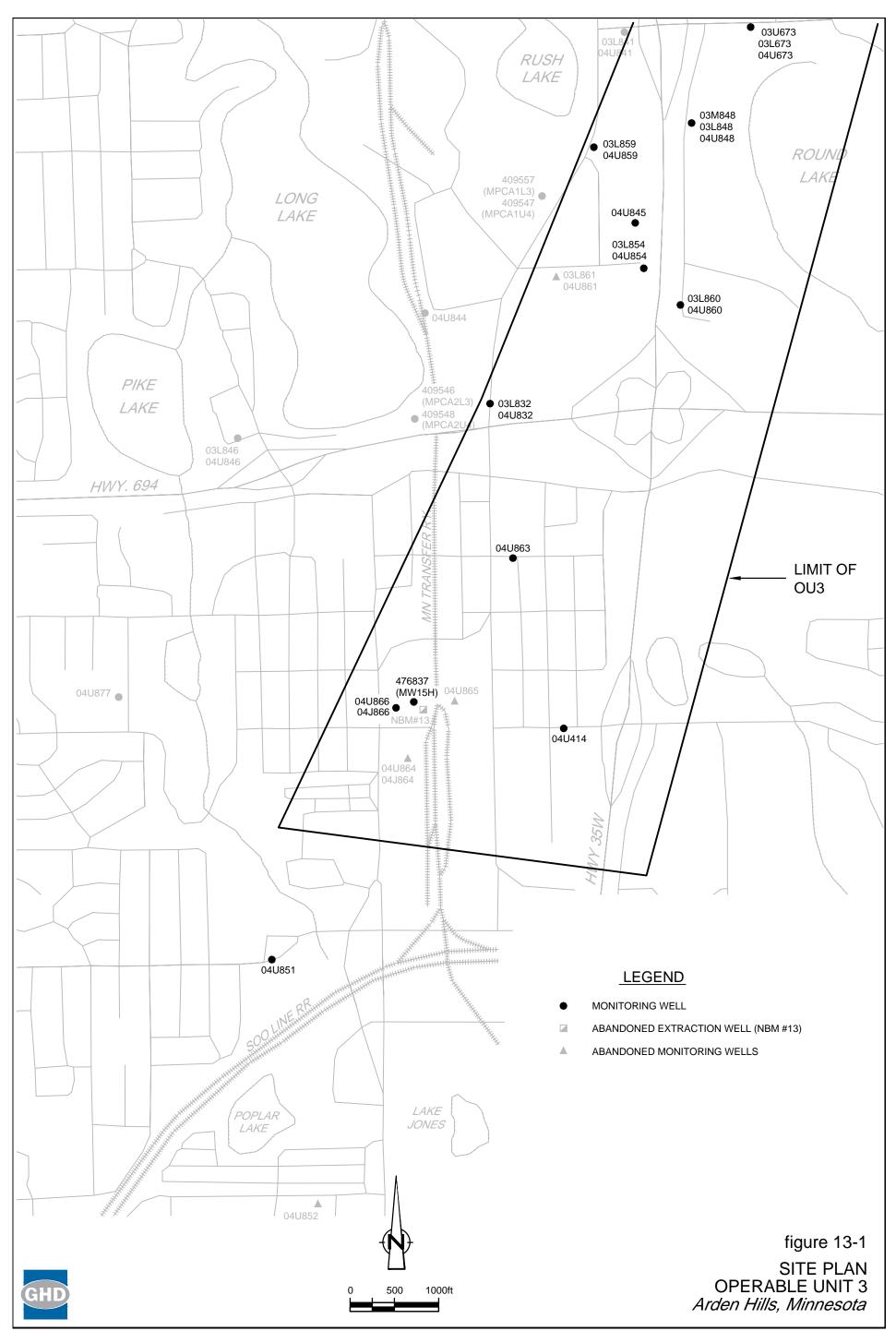




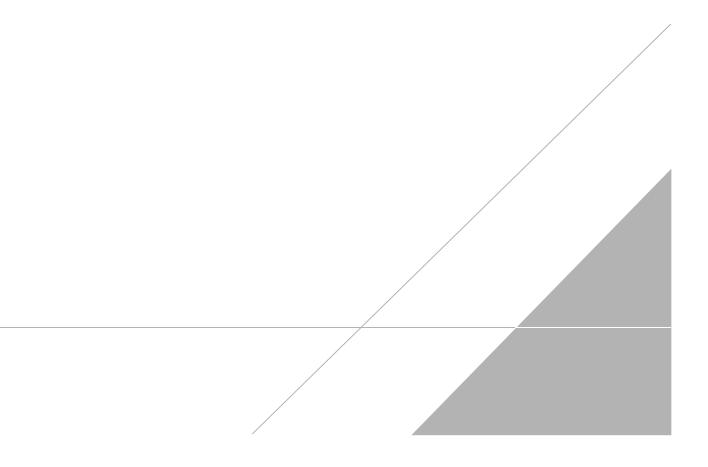




P:\drawings\11187000s\11187055\11187055-REPORT\11187055-43(001)\11187055-43(001)GN\11187055-43(001)GN-WA008.DWG Plot Date: JAN 18, 2019



P:\drawings\11187000s\11187055-11187055-REPORT\11187055-43(001)\11187055-43(001)GN\11187055-43(001)GN-WA009.DWG Plot Date: JAN 11, 2019


P:\drawings\11187050s\11187055-KEPORT\11187055-43(001)\11187055-43(001)GN\11187055-43(001)GN\4011.DWG Plot Date: JAN 18, 2019

P:\drawings\11187000s\11187055\11187055-REPORT\11187055-43(001)\11187055-43(001)GN\11187055-43(001)GN\4012.DWG Plot Date: JAN 08, 2019

APPENDIX A

FY 2018 – FY 2022 Monitoring Plan

Unit Designations:

- 01U Upper Fridley Formation 01L - Lower Fridley Formation
- 03U Upper Hillside Formation

03M - Middle Hillside Formation 03L - Lower Hillside Formation SP - St. Peter SL - St. Lawrence UNK - Unknown PC - Prairie du Chien J - Jordan

Notes:

- (A) Indicates that the monitoring is the responsibility of Orbital ATK.
- (B) Indicates that the monitoring is the responsibility of the Army.
- (1) "L (A or B)" denotes a water level measurement by the appropriate party.
- (2) "Q (A or B)" denotes a water quality sampling by the appropriate party. The required analyte list for each specific site is shown in Appendix A.4.
- (3) The designations refer to the following purposes:
 - Operable Unit 1 Water Quality
 - 1.a = To contour the perimeter of the plume which defines the area of concern for alternate water supply/well abandonment
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
 - Operable Unit 1 Water Levels
 - 3.b = To contour water levels for evaluation of containment
 - Site A Water Quality
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
 - Site A Water Levels
 - OR = Overall remedy. To evaluate groundwater flow direction relative to plume location
 - Site C Water Quality
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
 - Site C Water Levels
 - OR = Overall remedy. To evaluate groundwater flow direction relative to plume location
 - Site I Water Quality
 - 1.a = To track remedy progress
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
 - Site I Water Levels
 - 1.a = To track remedy progress
 - Site K Water Quality
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
 - Site K Water Levels
 - 3.a = To contour water levels for evaluation of containment

- Building 102 Water Quality
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
- Building 102 Water Levels
 - OR = Overall remedy. To evaluate groundwater flow direction relative to plume location
- TGRS Water Quality
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
- TGRS Water Levels
 - 1.a = To contour water levels for evaluation of containment
- Operable Unit 3 Water Quality
 - OR = Overall remedy. To evaluate attainment of the cleanup levels throughout the plume
- Operable Unit 3 Water Levels
 - 2.a = To contour water levels for evaluation of MNA remedy
- (4) Sampling performed by the City of Saint Anthony. Army collects sample only if in production and not being sampled by City of Saint Anthony; otherwise Army uses Saint Anthony data.
- (5) Sample extraction well annually or biennially, as shown, since it is no longer being pumped.
- (6) Wells 04U414 and 04U851 monitored every 5 years during event preceding 5-year review
- (7) Sample OU1 private water supply well as late as September 30, if necessary due to temporary inaccessibility.

	N	/ell Information		1					Purpose For	Monitorina ⁽³⁾	
Unit	Well I.D.	Common Name	Notes	June 18	June 19	June 20	June 21	June 22	Water Quality	Water Level	
Operable L											
03U	03U811			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	3.b	MPCA
03U	03U821			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
03U	03U822			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
03U	03U831										aband
03U	409550	PCA 6U3		Q,L(B)		Q,L(B)		Q,L(B)	OR	None	
03U	409596	BS118U3									aband
03M	03M843			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
03L	03L811			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
03L	03L822			Q,L(B)		Q,L(B)		Q,L(B)	OR	None	
03L	03L832			Q,L(B)		Q,L(B)		Q,L(B)	OR	None	
03L	03L841			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
03L	03L846			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
03L	03L853										
03L	409556	PCA4L3		Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
03L	409557	PCA1L3		Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
03L	409597	BS118L3									aband
PC	04U821			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U834			Q,L(B)		Q,L(B)		Q,L(B)	OR	None	
PC	04U836	MW-1		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U837	MW-3		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U838	MW-5		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U839	MW-7		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	3.b	MPCA
PC	04U841			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U843			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	3.b	
PC	04U844			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U846			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U847			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U849			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U850			Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	04U855			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	1.a, OR	3.b	MPCA
PC	04U871			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	3.b	
PC	04U872	İ		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	3.b	
PC	04U875			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	3.b	
PC	04U877			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	3.b	
PC	04U879			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	1.a, OR	3.b	MPCA
PC	04U880			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	3.b	
PC	04U881			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
PC	04U882			Q,L(B)		Q,L(B)		Q,L(B)	OR	None	
PC	04U883			Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	None	
PC	191942	BS118U4									aband
PC	200154	UM Golf Course		Q(B)		Q(B)		Q(B)	1.a, OR		
PC	200814	American Linen									
PC	206688	Cloverpond		Q(B)		Q(B)		Q(B)	1.a, OR		
PC	234547	Honeywell Ridgeway									
PC	409547	PCA1U4		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	409548	PCA2U4		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	409549	PCA3U4		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	409555	PCA5U4		Q,L(B)		Q,L(B)		Q,L(B)	1.a, OR	3.b	
PC	512761	Gross Golf Course #2		Q,L(B)		Q,L(B)		Q,L(B)	OR	3.b	
PC	554216	New Brighton #14									See A
PC	582628	New Brighton #15									See A
J	04J822			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	3.b	
J	04J834			Q,L(B)		Q,L(B)		Q,L(B)	OR	None	
J	04J835										

Comments

CA recommended annual sampling

ndoned 2006

ndoned 2007, may need replacement

ndoned 2007, may need replacement

CA recommended annual sampling

CA recommended annual sampling

CA recommended annual sampling

ndoned 2007, may need replacement

Appendix A.2 Appendix A.2

Unit Vell Information Notes June 10 June 20 June 21
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
J 04/839 MV-8 Q_L(B) Q_L(B) Q_L(B) Q_L(B) OLR OR 3.b J 04/847 Q_L(B) Q_L(B) <t< td=""></t<>
J 04,947 OL(B) OR Amy gets SL Anthony Data J 2008012 Grass Golf #1 OL(B) OL(B) OR See Appendix A.2 See Appendix A.2 PC(J 200812 Grass Golf #1 See Appendix A.2 PC(J 233221 R&D Systems, N. Well
J 04,189 DL(E) DL(E) QL(E) QL
J 04,882
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
J 200796 New Brighton #5 Image: Sec Appendix A.2 Sec Appendix A.2 PCUJ 200804 St. Anthony #3 Q(B) Q(B) OR Sec Appendix A.2 PCUJ 200812 Gross Golf #1 Sec Appendix A.2 PCUJ 200732 New Brighton #4 Sec Appendix A.2 PCUJ 200733 New Brighton #4 Sec Appendix A.2 PCUJ 2325321 RBD Systems, N. Well 1a, DR Well out of service PCUJ 234549 Reiner 1a, DR Well out of service Otiu 010038 OL(B) OL(B) 0(B) OR abandoned FY14 010 010041 abandoned FY14 abandoned FY14<
J 206797 New Brighton #6
PC/J 200804 St. Anthony #3 Q(B) Q(B) OR Army gets St. Anthony Data PC/J 2006792 New Brighton #4 See Appendix A.2 PC/J 206793 New Brighton #4 See Appendix A.2 PC/J 233321 R&D Systems, N. Well See Appendix A.2 PC/J 233454 Reiner See Appendix A.2 PC/J 234546 Honeywell Ridgeway Q(B) Q(B) Q(B) OR None UW 01/038 Q(B) Q(B) Q(B) OR None 01/0 01/049 Q(B) abandoned FY14 01/0 01/049 abandoned FY14 01/0 01/049 <
PC/J 200812 Gross Golf #1 See Appendix A2 PC/J 206792 New Brighton #3 See Appendix A2 PC/J 233221 R&D Systems, N. Well
PCU 206792 New Brighton #4 Image: Constraint of the second se
PC/J 206793 New Bighton #3 Image: Constraint of the systems, New Constraint of the systems, New Constraint of the systems, New Constraint of the system constrest of the system constraint of the system constraint of the sys
PC/J 233221 R&D Systems, N. Well
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
UNK 23546 Honeywell Ridgeway Q(B) Q(B) OR 01U 010038 Q(B) Q(B) OR abandoned FY14 01U 010039 QL(B) QL(B) QL(B) QL(B) OR OR abandoned FY14 01U 010040 abandoned FY14 01U 010067 abandoned FY14 01U 010067 abandoned FY14 01U 010067 abandoned FY14 01U 010103 QL(B) QL(B) QL(B) QL(B) QL(B) QL(B) OR OR 01U 010106 abandoned FY14 01U
Operable Unit 2 - Site A Shallow Groundwater Image: Constraint of the constraint
01U 01U038 abandoned FY14 01U 01U040 abandoned FY14 01U 01U041 abandoned FY14 01U 01U041 abandoned FY14 01U 01U067 abandoned FY14 01U 01U067 abandoned FY14 01U 01U102 abandoned FY14 01U 01U103 abandoned FY14 01U 01U105 abandoned FY14 01U 01U106
01U 01U039 QL(B)
01U 01U040 abandoned FY14 01U 01U063 L(B) L(B) L(B) L(B) abandoned FY14 01U 01U063 L(B) L(B) L(B) L(B) abandoned FY14 01U 01U067 abandoned FY14 01U 01U067 abandoned FY14 01U 01U102 QL(B) QL(B) QL(B) QL(B) QL(B) O(B) OR OR 01U 01U104 abandoned FY14 01U 01U106 L(B) L(B) L(B) L(B) L(B)
01U 01U041 abandoned FY14 01U 01U063
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
01U 01U103 01U103 01U 01U104 0R Including antimony 01U 01U104 abandoned FY14 01U 01U105 abandoned FY14 01U 01U106 L(B) L(B) L(B) L(B) abandoned FY14 01U 01U107 abandoned FY14 01U 01U108 Q,L(B) Q,L(B) Q,L(B) Q,L(B) O,L(B) O,R abandoned FY14 01U 01U100 abandoned FY14 01U 01U110 Q,L(B) Q,L(B) Q,L(B) Q,L(B) O,L(B) OR OR 01U 01U116 Q,L(B) Q,L(B) Q,L(B) Q,L(B) Q,L(B) O,R OR 01U 01U117 Q,L(B) Q,L(B) Q,L(B) Q
01U 01U104 110<
01U 01U104 01U105 abandoned FY14 01U 01U105 abandoned FY14 01U 01U106 I-B I-B I-B I-B I-B abandoned FY14 01U 01U107 I-B
01U 01U105 abandoned FY14 01U 01106 L(B) L(B) L(B) L(B) L(B) OT OT <td< td=""></td<>
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
01U 01U107 abandoned FY14 01U 01U108 Q,L(B)
01U 01U108 01U108 QL(B) QL(B) <th< td=""></th<>
01U 01U110 abandoned FY14 01U 01U115 Q,L(B)
01U 01U115 01U115 Q,L(B)
01U 01U116 QL(B)
01U 01U117 Q,L(B)
01U 01U118 01U118 01U 01U118 01U 01U119 01U 01U119 01U 01U119 00R 01U 01U 01U120 01U 01U120 01U 01U125 01U 01U125 01U 01U126 01U 01U126 01U 01U126 01U 01U126 01U 01U126 01U 01U127 00R 00R 00R 01U 01U133 01U133 01U 01U135 01U 01U135 01U 01U135 01U 01U135 01U 01U136 01U136
01U 01U119 01U119 CR CR 01U 01U120 01U120 L(B) L(B) L(B) L(B) L(B) OR 01U 01U125 OR 01U 01U126 OR
01U 01U120 L(B) L(B) L(B) L(B) L(B) OR 01U 01U125 <td< td=""></td<>
01U 01U125 01U 01U125 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
01U 01U126 QL(B) QL(B) QL(B) QL(B) QL(B) QL(B) OR OR 01U 01U127 01U127 L(B) L(B) L(B) L(B) L(B) OR OR OR 01U 01U133 L(B) L(B) L(B) L(B) L(B) L(B) OR OR 01U 01U135 L(B) L(B) L(B) L(B) L(B) OR 01U 01U136 0R OR OR
01U 01U127 L(B) L(B) L(B) L(B) CR OR 01U 01U133 01U133 L(B) L(B) L(B) L(B) L(B) OR OR 01U 01U135 L(B) L(B) L(B) L(B) L(B) OR OR 01U 01U136 OR OR
01U 01U133 L(B) L(B) L(B) L(B) L(B) L(B) L(B) OR 01U 01U135 L(B) L(B) L(B) L(B) L(B) OR 01U 01U136 OR OR
01U 01U135 L(B) L(B) L(B) L(B) L(B) OR 01U 01U136 abandoned FY14
01U 01U136 abandoned FY14
010 010137
01U 01U138 Q,L(B) Q,L(B) Q,L(B) Q,L(B) OR OR
01U 01U139 Q,L(B) Q,L(B) Q,L(B) Q,L(B) OR OR
01U 01U140 Q,L(B) Q,L(B) Q,L(B) Q,L(B) OR OR
01U 01U141 L(B) L(B) L(B) L(B) OR
01U 01U145 Piezometer L(B) L(B) L(B) L(B) OR
01U 01U146 Piezometer L(B) L(B) L(B) L(B) OR
01U 01U147 Piezometer L(B) L(B) L(B) L(B) OR
01U 01U148 Piezometer L(B) L(B) L(B) L(B) OR

	W	lell Information	Neter	1	1	I	1	I	Purpose For Monitoring ⁽³⁾		O amounts
Unit	Well I.D.	Common Name	Notes	June 18	June 19	June 20	June 21	June 22	Water Quality	Water Level	Comments
01U	01U149	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U150	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U151	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U152	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U153	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U154	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U155	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U156	Piezometer		L(B)	L(B)	L(B)	L(B)	L(B)		OR	
01U	01U157			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U158			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U350					,=() 			OR	OR	
01U	01U351	EW-1							OR	OR	
01U	01U352	EW-2		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U353	EW-3		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U354	EW-4		<u>, 2(</u> 2)					OR	OR	
01U	01U355	EW-5		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U356	EW-6		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U357	EW-7		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U358	EW-8		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U901	2.0 0		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
010	01U902			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	Including antimony
01U	01U903			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
010	01U904			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	Including antimony
	nit 2 - Site C Shal	low Groundwater		Q,L(D)	Q,L(D)	Q,L(D)	Q,L(D)	Q,L(D)		ÖN	moldaring anamony
01U	01U045										abandoned FY14
010	01U046			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
010	01U085			Q,L(D) 	Q,L(D) 	Q,L(D) 	Q,L(D)	Q,L(D)			abandoned FY14
010	01U551	EW-1									abandoned FY14
010	01U552	EW-1 EW-2									abandoned FY14 abandoned FY14
010	01U553	EW-2 EW-3									abandoned FY14 abandoned FY14
010	01U561	EW-3			 Q,L(B)				OR	OR	
	01U562	MW-1		Q,L(B)		Q,L(B)	Q,L(B)	Q,L(B)	OR		
01U	010562	MW-3		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR OR	
01U				Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)			
01U	01U564 01U565	MW-4 MW-5		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	abandoned FY14
01U											1
01U	01U566	MW-6									abandoned FY14
01U	01U567	MW-7		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	abandoned EV14
01U	01U568	MW-8									abandoned FY14
01U	01U569	MW-9									abandoned FY14
01U	01U570	MW-10									abandoned FY14
01U	01U571	MW-11		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	ahan dan ad EV(4.4
01U	01U572	MW-12									abandoned FY14
01U	01U573	MW-13		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U574	MW-14		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U575	MW-15		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U576	MW-16		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	<u> </u>
	nit 2 - Site I Shalle	ow Groundwater								1	
01U	01U064										abandoned FY14
01U	01U631										abandoned FY 14
01U	01U632										abandoned FY14
01U	01U636										abandoned FY14
01U	01U639										abandoned FY14
01U	01U640										abandoned FY14
01U	01U666										abandoned FY14
01U	01U667			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	OR	abandoned FY14, replacement pending
				/		. ,					

		/ell Information							Dumos E-	(3)	
11			Notes	June 18	June 19	June 20	June 21	June 22	Purpose For I		Comments
Unit	Well I.D.	Common Name							Water Quality	Water Level	
01U	482086	I01MW									abandoned FY14
01U	482087	105MW									abandoned FY14
01U	482088	I02MW									abandoned FY14
01U	482089	I04MW									abandoned FY14
01U	482090	103MW									abandoned FY14
Note: All of	the Site I shallow c	roundwater wells were sealed in FY14. Follo	wina soil r	emediation	under Build	lina 502. or	nlv 01U667	' was re-ins	talled (with annual	sampling).	4
		low Groundwater	<u> </u>			<u> </u>					
01U	01U047			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U048			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U052			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
010	01U065			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U128			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
01U	01U601										abandoned FY14
01U	01U602										abandoned FY14
01U	01U603			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
01U	01U604										abandoned FY14
01U	01U605										abandoned FY14
01U	01U607			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U608			L(A)	L(A)	L(A)	L(A)	L(A)			abandoned FY14, replacement pending
01U	01U609			L(A)	L(A)	L(A)	L(A)	L(A)			abandoned FY14, replacement pending
01U	01U611	İ		Q,L(Á)	Q,L(Á)	Q,L(Á)	Q,L(Á)	Q,L(Á)			abandoned FY14, replacement pending
01U	01U612			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	,,
01U	01U613			()		_(, ,)	_(, ,)	_()			abandoned FY14
01U	01U615			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
010	01U616			G,∟(∧) 			⊴,∟(∧)	G, L(/\)			abandoned FY14
010	01U617				Q,L(A)			Q,L(A)	OR		
	01U618			Q,L(A)		Q,L(A)	Q,L(A)			3.a	
01U				Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
01U	01U619										abandoned FY14
01U	01U620										abandoned FY14
01U	01U621			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
01U	01U624										abandoned FY14
01U	01U625			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U626			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U627			L(A)	L(A)	L(A)	L(A)	L(A)		3.a	
01U	01U628										abandoned FY14
01U	482083	K04-MW		Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
01U	482084	K02-MW									abandoned FY14
01U	482085	K01-MW									abandoned FY14
03U	03U621			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	3.a	
		2 Shallow Groundwater		~,-(/ '/	~,-(' ')	~,-(' ')	∽,-(/ '/	~,-(/ '/			
01U	01U048			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	1
010	01U578			Q,L(D)	Q,L(D)	Q,L(D) 	Q,L(D) 	Q,L(D) 			abandoned FY14
010	01U579			Q,L(B)	 Q,L(B)	 Q,L(B)	 Q,L(B)	Q,L(B)	OR	OR	
01U	01U580	l		Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U581			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U582			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U583			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01U	01U584			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01L	01L581			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01L	01L582			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01L	01L583			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
01L	01L584			Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	Q,L(B)	OR	OR	
	nit 2 - Deep Grou	ndwater (TGRS)			···· · · /	·· · · /	·· \ /				
03F	03F302	B1									See Appendix A.2
03F	03F303	B2	(5)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
501			(3)	G, L(/ 1)	S, (/ ()	S, L(/ ()	∞,⊏(/ ()	∞,⊏(/ \)		1.0	<u> </u>

	N	/ell Information							Purpose For I	Monitorina ⁽³⁾	
Unit	Well I.D.	Common Name	Notes	June 18	June 19	June 20	June 21	June 22	Water Quality	Water Level	Comments
03F	03F304	B3									See Appendix A.2
03F	03F305	B4									See Appendix A.2
03F	03F306	B5									See Appendix A.2
03F	03F307	B6									See Appendix A.2
03F	03F308	B7	(5)	Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03F	03F312	B11	(5)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
03F	03F319	B13	(0)	G, E(7 ()	Q, L(7 1)	Q, L(/ I)	Q, L(7 1)	G, E(7 t)		1.4	See Appendix A.2
03U	03U001	Bio		L(A)		L(A)		L(A)		1.a	
03U	03U002			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U003			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U004					G,⊑(⊼) 					Abandoned FY13
03U	03U005			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U007			Q,L(A)		Q,L(A)		Q,L(A)	Background	1.a	
03U	03U008			L(A)		L(A)		L(A)	Dackground	1.a	
030	03U009			Q,L(A)		Q,L(A)		Q,L(A)	Background	1.a	
030	03U010			L(A)						1.a	
03U	03U010					L(A)		L(A)		1.a	
				L(A)		L(A)		L(A)			
03U	03U012			L(A)		L(A)		L(A)		1.a	
03U	03U013			L(A)		L(A)		L(A)		1.a	
03U	03U014			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U015			L(A)		L(A)		L(A)		1.a	
03U	03U016			L(A)		L(A)		L(A)		1.a	
03U	03U017			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U018			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U019			L(A)		L(A)		L(A)		1.a	
03U	03U020			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U021			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U022			L(A)		L(A)		L(A)		1.a	
03U	03U023			L(A)		L(A)		L(A)		1.a	
03U	03U024			L(A)		L(A)		L(A)		1.a	
03U	03U025			L(A)		L(A)		L(A)		1.a	
03U	03U026			L(A)		L(A)		L(A)		1.a	
03U	03U027			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U028			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U029			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U030			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U031										abandoned FY14
03U	03U032			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U075										abandoned FY14
03U	03U076										abandoned FY14
03U	03U077			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U078			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U079			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U082			L(A)		L(A)		L(A)		1.a	
03U	03U083			L(A)		L(A)		L(A)		1.a	
03U	03U084			L(A) 		L(A) 		L(//) 			abandoned FY14
030	03U087			 L(A)		 L(A)		 L(A)		1.a	
03U	03U088			L(A)		L(A)		L(A)		1.a	
03U	03U089			L(A)		L(A)		L(A)		1.a	
03U	03U090			L(A)		L(A)		L(A)		1.a	
03U	03U092	1		Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U093			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
03U	03U094			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U096		L	Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U097										

	W	/ell Information	Netze	1	1	I	1	1	Purpose For I	Monitorina ⁽³⁾	O amounta
Unit	Well I.D.	Common Name	Notes	June 18	June 19	June 20	June 21	June 22	Water Quality	Water Level	Comments
03U	03U099			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
03U	03U111			L(Å)		L(Å)		L(A)		1.a	
03U	03U112			L(A)		L(A)		L(A)		1.a	
03U	03U113			L(A)		L(A)		L(A)		1.a	
03U	03U114			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U121										
03U	03U129										
03U	03U301	SC1									See Appendix A.2
03U	03U314	SC2									See Appendix A.2
03U	03U315	SC3	(5)	Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U316	SC4	(5)	Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U317	SC5									See Appendix A.2
03U	03U521										
03U	03U647										abandoned FY14
03U	03U648										abandoned FY14
03U	03U658										abandoned FY13
03U	03U659			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U671			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U672										abandoned FY14, replaced by 03U677
03U	03U674										abandoned FY14
03U	03U675										
03U	03U676										abandoned FY14
03U	03U677			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	constructed FY14
03U	03U701			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U702			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U703			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U704			L(A)		L(A)		L(A)		1.a	
03U	03U705			L(A)		L(A)		L(A)		1.a	
03U	03U706			L(A)		L(A)		L(A)		1.a	
03U	03U707			L(A)		L(A)		L(A)		1.a	
03U	03U708			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
03U	03U709			Q,L(A)		Q,L(A)	 	Q,L(A)	OR	1.a	
03U	03U710			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U711			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03U	03U715			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
030	03U716			L(A)		L(A)		L(A)		1.a	
03U	03U801			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
030	03U803			Q,L(A)	Q,L(A)	Q,L(A)	 	Q,L(A)	OR	1.a	
030	03U804			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
030	03U805								OR	1.a	
030	03U806			Q,L(A) Q,L(A)	 Q,L(A)	Q,L(A) Q,L(A)	 Q,L(A)	Q,L(A) Q,L(A)	OR	1.a	
030	519288	E101-MW		Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)			
03U	519289	E101-MW									
030	519289	E102-MW									
	03M001										
03M	03M001 03M002			L(A)		L(A)		L(A)		1.a	
03M				Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03M	03M003 03M004			L(A)		L(A)		L(A)		1.a	Abandoned FY13
03M											
03M	03M005			L(A)		L(A)		L(A)		1.a	
03M	03M007			L(A)		L(A)		L(A)		1.a	
03M	03M010			L(A)		L(A)		L(A)		1.a	
03M	03M012			L(A)		L(A)		L(A)		1.a	
03M	03M013			L(A)		L(A)		L(A)		1.a	
03M	03M017			L(A)		L(A)		L(A)		1.a	
03M	03M020	ļ		Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	

	N	/ell Information	Notoo	luno 19	June 19	June 20	luna 24	June 22	Purpose For I	Monitoring ⁽³⁾	
Unit	Well I.D.	Common Name	Notes	June 18	June 19	June 20	June 21	June 22	Water Quality	Water Level	i i
03M	03M713			L(A)		L(A)		L(A)		1.a	
03M	03M802			Q,L(A)	Q,L(A)	Q,L(Á)	Q,L(A)	Q,L(Á)	OR	1.a	<u> </u>
03M	03M806			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	<u> </u>
03L	03L001			L(A)		L(A)		L(A)		1.a	<u> </u>
03L	03L002			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	<u> </u>
03L	03L003			L(A)		L(A)		L(A)		1.a	<u> </u>
03L	03L004										Aband
03L	03L005			L(A)		L(A)		L(A)		1.a	/ iburia
03L	03L007			Q,L(A)		Q,L(A)		Q,L(A)	Background	1.a	<u> </u>
03L	03L010			L(A)		L(A)		L(A)		1.a	
03L	03L012			L(A)		L(A)		L(A)		1.a	
03L	03L012			L(A)		L(A)		L(A)		1.a	
03L	03L014			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03L	03L017			Q,L(A)		Q,L(A) Q,L(A)		Q,L(A)	OR	1.a	
03L	03L018			Q,L(A)				Q,L(A)	OR	1.a	
03L	03L020			Q,L(A)		Q,L(A)		Q,L(A)	OR		
03L	03L020					Q,L(A)			OR	1.a	
				Q,L(A)		Q,L(A)		Q,L(A)		1.a	a la a sa al
03L	03L027										aband
03L	03L028										aband
03L	03L029										aband
03L	03L077			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	<u> </u>
03L	03L078			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	<u> </u>
03L	03L079			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	<u> </u>
03L	03L080			L(A)		L(A)		L(A)		1.a	<u> </u>
03L	03L081			L(A)		L(A)		L(A)		1.a	
03L	03L084										aband
03L	03L113			L(A)		L(A)		L(A)		1.a	
03L	03L802			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
03L	03L806			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
03L	03L809			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
03L	03L833			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U001			L(A)		L(A)		L(A)		1.a	
PC	04U002			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U003			L(A)		L(A)		L(A)		1.a	
PC	04U007			Q,L(A)		Q,L(A)		Q,L(A)	Background	1.a	
PC	04U012			L(A)		L(A)		L(A)		1.a	
PC	04U020			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U027										aband
PC	04U077			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U510			Q,L(A)		Q,L(A)		Q,L(A)	Background	1.a	
PC	04U701			Q,L(A)		Q,L(A)		Q,L(A)	ŌR	1.a	
PC	04U702			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U708			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U709			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U711			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	
PC	04U713			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC	04U714			L(A)		L(A)		L(A)		1.a	
PC	04U802			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	<u> </u>
PC	04U806			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	<u> </u>
PC	04U833			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	<u> </u>
J	04J077			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	<u> </u>
U	04J702			Q,L(A)	G,E(71)	Q,L(A)		Q,L(A)	OR	1.a	<u> </u>
U	04J702			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
J	04J713			Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
J	04J714			L(A)		L(A)		L(A)		1.a	
J	04J/14	ļ								i.a	

Comments

ndoned FY13 ndoned FY14 ndoned FY14 ndoned FY14 ndoned FY14 ndoned FY14

	W	lell Information		1 10					Purpose For Monitoring ⁽³⁾		
Unit	Well I.D.	Common Name	Notes	June 18	June 19	June 20	June 21	June 22	Water Quality	Water Level	Comments
PC/J	PJ#003			L(A)		L(A)		L(A)		1.a	
PC/J	PJ#027										abandoned FY14
PC/J	PJ#309	B8									See Appendix A.2
PC/J	PJ#310	B9									See Appendix A.2
PC/J	PJ#311	B10	(5)	Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC/J	PJ#313	B10	(5)	Q,L(A)		Q,L(A)		Q,L(A)	OR	1.a	
PC/J	PJ#802	512	(0)	L(A)		L(A)		L(A)		1.a	
PC/J	PJ#806			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	1.a	1
1 0/0	Staff Gauges			L(A)	 	L(A)		L(A)			1
Operable L	Init 2 - Unit 1 Wells	 }						L(A)			1
01U	01U035										
010	01U043										
010	01U044										
010	01U045										
010	01U045										
010	01U060										
	01U072										
01U											
01U	01U085										
Operable U									0.0	0	1
03U	03U673			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
03M	03M848			Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	2.a	
03L	03L673			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
03L	03L832			L(A)		L(A)		L(A)		2.a	
03L	03L848			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
03L	03L854			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
03L	03L859			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
03L	03L860			L(A)		L(A)		L(A)		2.a	
03L	03L861										Abandoned FY06
03L	476837	MW15H									
PC	04U414	414U4	(6)	Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
PC	04U673			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
PC	04U832			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	Contingency Action for FY08
PC	04U845			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	Contingency Action for FY08
PC	04U848			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
PC	04U851		(6)	Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
PC	04U852										Abandoned FY09
PC	04U854			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
PC	04U859			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	i
PC	04U860			Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	i
PC	04U861										Abandoned FY06
PC	04U863	323U4		Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	Q,L(A)	OR	2.a	
PC	04U864	324U4									Abandoned FY09
PC	04U865	325U4									Abandoned FY09
PC	04U866	326U4		Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
PC	520931	NBM #13		<u>, _ (, t)</u>							Abandoned FY07
J	04J864	324 J									Abandoned FY09
J	043866	326 J		Q,L(A)		Q,L(A)		Q,L(A)	OR	2.a	
Well Invent		0200		≪,∟(∩)	I	≪,⊏(∩)		,⊏(∩)		2.4	1
		the well inventory actors and									
		the well inventory category)	A I-						\ \ /!!_! <u></u>		2070 Marshal Ave
	200180	Town & Country Golf Course	1b			Q(B)			Well Inventory		2279 Marshal Ave
	200522	Windsor Green	1b			Q(B)			Well Inventory		Silver Lake Rd & Cty Rd E
	200523	Windsor Green	1b			Q(B)			Well Inventory		Silver Lake Rd & Cty Rd E
	234338	Bosell	1b			Q(B)			Well Inventory		1575 14th Ave NW
	234421	BioClean (BioChem)	1b			Q(B)			Well Inventory		2151 Mustang Dr
	234544	R&D Systems	1b			Q(B)			Well Inventory		2201 Kennedy St NE

doned FY14	
Appendix A.2	
Appendix A.2	

Well Information			Notes	June 18	luno 10	June 20	June 21	luno 22	Purpose For Monitoring ⁽³⁾		Comments	
Unit	Well I.D.	Common Name	Notes	Julie Io		Julie 20	Julie 21	June 22	Water Quality	Water Level	Comments	
	249632	Montzka, Harold	1b			Q(B)			Well Inventory		2301 N Upland Crest NE	
	433298	Town & Country Golf Course	1b			Q(B)			Well Inventory		2279 Marshall Ave	
	509052	Shriners Hospital	1b			Q(B)			Well Inventory		2025 E River Rd	
	537801	Midway Industrial	1b			Q(B)			Well Inventory		4759 Old Hwy 8	
	756236	Alcan	1c			Q(B)			Well Inventory		150 26th Ave SE	
	200176	Waldorf Paper Products	2b			Q(B)			Well Inventory		2236 Myrtle Ave	
	249007	Walton, Toni	2b			Q(B)			Well Inventory		4453 Old Hwy 10	
	S00002	Midland Hills Country Club	2b			Q(B)			Well Inventory		2001 N Fulham St	
	200076	Old Dutch Foods, Inc	2c			Q(B)			Well Inventory		2375 Terminal Rd	
	236439	Waldorf Paper Products	2c			Q(B)			Well Inventory		2250 Wabash Ave	

General Notes:

The next major sampling event for Well Inventory will be in June 2020 (conducted every 4 years)

All of the Site I shallow groundwater wells were sealed in FY14.

Appendix A-2 FY 2018-FY 2022 Monitoring Plan for Remedial Treatment Systems FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Location	Sampling Frequency	Parameters		
OU1: Deep Groundwater ⁽¹⁾				
 Extraction Wells NBM#4, #14, and #15 	- Monthly	- Pumping Volumes		
(and also NBM#3, #5, and #6)	- Monthly	- Water Quality (2)		
PGAC Effluent	- Monthly	- Water Quality (2)		
OU2: Site K Remedial Action				
Extracted Groundwater	- Monthly	- Pumping Volume		
 Treatment System Effluent [Outfall 391 (010)] 	- See Appendix A.3	- See Appendix A.3		
OU2: TCAAP Groundwater Recovery System (TGRS)				
Extraction Wells	- Monthly	- Pumping Volumes - Water Levels		
	- Semi-Annually			
	- Semi-Annually	- Water Quality (2)		
 Treatment System Influent 	- Monthly	- Pumping Volumes		
	- Monthly	- Water Quality (2)		
Treatment System Effluent	- Monthly	- Water Quality (2)		
Footnotes:				

Footnotes:

1. Performed by the City of New Brighton using their Sampling and Analysis Plan (subject to the remedy time-out for the

1,4-dioxane issue).

2. The required analyte list for each specific site is presented in Appendix A.4.

Appendix A.3 FY 2018-FY 2022 Monitoring Plan for Surface Water FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Analysis	Analytical	Units	Site K Effluent	Site C Surface Water Locations			
Analysis	Method	Units	(Outfall 010)	(SW-5)	(SW-6)	(NE Wetland)	
Flow Rate		gal/day	Continuous				
Total Flow		gal	M				
рН	(field)	(pH)	Q				
Hardness	(field)	(pH)	Q				
Cyanide	9012A	mg/L	Q				
Copper	6020	mg/L	Q				
Lead	6020	mg/L	Q	А	Α	A	
Mercury	7470A	mg/L	Q				
Phosphorus (Total)	365.4	mg/L	Q				
Silver	6020	mg/L	Q				
Zinc	6020	mg/L	Q				
Trichloroethene	8260C	mg/L	Q				
1,1-Dichloroethene	8260C	mg/L	Q				
1,1-Dichloroethane	8260C	mg/L	Q				
Cis-1,2-Dichloroethene	8260C	mg/L	Q				
Trans-1,2-Dichloroethene	8260C	mg/L	Q				
Vinyl Chloride	8260C	mg/L	Q				
1,2-Dichloroethane	8260C	mg/L	Q				
Aaronyma and Abbanyistianay							

Acronyms and Abberviations:

A = Annually in June

M = Measurement required once per month

mg/L = milligrams per liter

Q = Analysis required once per quarter

Appendix A.4 Site Specific Lists of Required Analytes FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

<u>Note:</u> Cleanup Levels (in µg/L) from each Record of Decision are shown below for use in determining the required method detection limits. Also note that these lists represent the <u>minimum</u> list of analytes. A larger analyte list may be utilized by the monitoring organization, if so desired. In FY 2018,1,4-dioxane (Method 522) was also analyzed for at all summer VOC sampling locations with the exception of Site A. December TGRS extraction well sampling and treatment system influent/effluent sampling in months other than June were analyzed for VOCs only. 1,4-dioxane will continue to be monitored in OU1, OU2, and OU3 Deep Groundwater, Site K Unit 3, and TGRS extraction wells.

OU1 (DEEP GROUNDWATER) (1)

1,1-Dichloroethane	70
1,1-Dichloroethene	6
cis-1,2-Dichloroethene	70
1,1,1-Trichloroethane	200
1,1,2-Trichloroethane	3
Trichloroethene	5

SITE A (SHALLOW GROUNDWATER)⁽²⁾

Antimony*	6
1,1-Dichloroethene	6
1,2-Dichloroethane	4
Benzene	10
Chloroform	60
cis-1,2-Dichloroethene	70
Tetrachloroethene	7
Trichloroethene	30

*Antimony is only monitored at these 3 wells: 01U103, 01U902 and 01U904 (June only)

SITE C (SHALLOW GROUNDWATER)⁽³⁾

Lead	15
SITE I (SHALLOW GROUNDWATER) ⁽²⁾	
1,2-Dichloroethene (cis and trans)	70
Trichloroethene	30
Vinyl Chloride	0.2

Notes:

(1) From Page 18 of the OU1 Record of Decision.

(2) From Table 1 of the OU2 Record of Decision.

(3) From Table 1 of Amendment #1 to the OU2 Record of Decision.

(4) From Page 2-13 of Amendment #4 to the OU2 Record of Decision.

(5) Vinyl chloride is also analyzed by SW-846 Method 8260C - SIM at wells 01U048, 01U582, and 01L582.

(6) From Page 26 of the OU3 Record of Decision.

BLDG 102 SHALLOW GROUNDWATER⁽⁴⁾

Vinyl Chloride ⁽⁵⁾	0.18
cis-1,2-Dichloroethene	70
Trichloroethene	5
1,1-Dichloroethene	6

SITE K (SHALLOW GROUNDWATER)⁽²⁾

1,2-Dichloroethene (cis and trans)	70
Trichloroethene	30

OU2 (DEEP GROUNDWATER)⁽²⁾

1,1,1-Trichloroethane	200
1,1-Dichloroethane	70
1,1-Dichloroethene	6
1,2-Dichloroethane	4
cis-1,2-Dichloroethene	70
Tetrachloroethene	5
Trichloroethene	5

OU3 (DEEP GROUNDWATER)⁽⁶⁾

1,1-Dichloroethane	70
1,1-Dichloroethene	6
cis-1,2-Dichloroethene	70
1,1,1-Trichloroethane	200
1,1,2-Trichloroethane	3
Trichloroethene	5

WELL INVENTORY SAMPLING

VOCs (report full VOC list)

Analytical Methods:

VOCs: SW-846 Method 8260C Antimony & Lead: SW-846 Method 6020

NBCGRS Well	Estimate	ed Physical Capaci	ty Range	ge Remedial Production Range			Flow Rate Equivalents (24-hr Production Basis)		
	Normal Individual Low (gpm)	Normal Individual High (gpm) (See Note 1)	Peak Combined High (gpm) (See Note 1)	Lower Limit (MGD)	Upper Limit (MGD)	Lower Limit (gpm)	Upper Limit (gpm)		
3 (See Note 2)	300	600	400	0.000	0.576	0	400		
4 (See Note 2)	500	1,100	900	1.152	1.296	800	900		
3 + 4 (See Note 2)	800	n/a	1,300	1.152	1.872	800	1,300		
5	400	850	750	0.864	1.080	600	750		
6	400	850	750	0.000	1.080	0	750		
5 + 6 (See Note 3)	800	1,700	1,500	0.864	2.160	600	1,500		
14	500	1,200	1,000	0.000	1.440	0	1,000		
15	500	1,200	1,000	1.152	1.440	800	1,000		
TOTAL WELL CAPACITY	2,600	n/a	4,800	3.168	6.912	2,200	4,800		
TREATMENT CAPACITY		3,200	5,000						
NBCGRS SYSTEM LIMIT		3,200	4,800						

Table D-1 **Remedial Production Ranges for Normal Operation** (Effective January 2008)

NOTES:

1. During peak production periods with all wells running, individual well capacities are limited by interference, high drawdown, and high system head losses

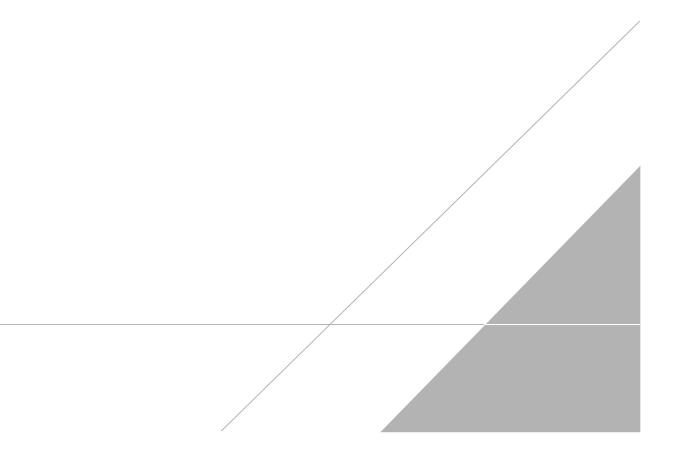
2. While shown individually to illustrate normal operational intent, enforceable target is for combined Well 3 plus Well 4 since the wells are located in close proximity and effectively operate as a single point source. Wells 3 and 4 can be used interchangeably to produce total daily target.

3. While shown individually to illustrate normal operational intent, enforceable target is for combined Well 5 plus Well 6 since the wells are located in close proximity and effectively operate as a single point source. Wells 5 and 6 can be used interchangeably to produce total daily target.

Michael R. Fix HIS FER 2008

Twin Cities Army Ammunition Plant

2/15/08 Grant M. Wyffels


City of New Brighton

Event	Nor	Normal Operation			Well 3 and/or 4 Down			5 and/or 6 I	Down	V	ell 14 Dow	/n	M	Vell 15 Dow	/n
Well / Pair	Priority	Lower Limit (MGD)	Upper Limit (MGD)	Priority	Lower Limit (MGD)	Upper Limit (MGD)	Priority	Lower Limit (MGD)	Upper Limit (MGD)	Priority	Lower Limit (MGD)	Upper Limit (MGD)	Priority	Lower Limit (MGD)	Upper Limit (MGD)
3 + 4	2	1.152	1.872	NA	0.000	0.000	2	1.440	1.872	2	1.152	1.872	1	1.440	1.872
5 + 6	3	0.864	2.160	2	1.728	2.160	NA	0.000	0.000	3	0.864	2.160	2	1.728	2.160
14	4	0.000	1.440	3	1.152	1.440	3	1.152	1.440	NA	0.000	0.000	3	0.720	1.152
15	1	1.152	1.440	1	1.152	1.440	1	1.152	1.440	1	1.152	1.440	NA	0.000	0.000
Total		3.168	6.912		4.032	5.040		3.744	4.752		3.168	5.472		3.888	5.184

Table D-2 Alternate Remedial Production Ranges for Contingent Events (Effective January 2008)

APPENDIX B

FY 2018 Well Index

Purpose

The purpose of the well index is to identify all wells, both past and present, that:

- Have been used to collect water quality data or groundwater elevations in regard to work at the New Brighton/Arden Hills Superfund Site (including private wells and offsite monitoring wells sampled by the Army); or
- Are owned by the Army; or
- Are located within the boundaries of OU2 (the former TCAAP property)

In addition, the well index aims to identify the current status (in use, sealed, abandoned, etc.) of these wells.

The well index does not include wells identified in the Well Inventory Update (Appendix E) that have not been sampled by the Army at any point in history.

The list contained in the well index is by no means a compilation of all available data. Other data may exist regarding an individual well that was not discovered or searched out during the course of this effort. The list is intended to be a reasonable effort to gather the data concerning the wells that is readily available. Therefore, if additional data is desired concerning a certain well, it may be possible to search out and obtain that data from records not searched during the course of the investigation.

Background

OU2 and OU1/OU3 wells have been installed in four hydrogeologic units beneath the site. These hydrogeologic units, as referred to in this report, are conceptually illustrated on Figure B-1 and are described below:

- Unit 1: This unit, referred to as the Fridley Formation, consists of alluvium and lacustrine deposits above the Twin Cities Formation (Unit 2). The formation is made up of fine- to medium-grained sand and clayey silt, which acts as an unconfined aquifer with an estimated hydraulic conductivity of 8.3 x 10⁻³ cm/sec (International Technology Corp. 1992). The Unit 1 deposits are discontinuous at the New Brighton/Arden Hills Superfund Site (NB/AH Site) and range in thickness from zero to 50 feet. They are predominantly limited to the north, east, and southwest portions of the site. Groundwater in Unit 1 is also discontinuous.
- Unit 2: Known as the Twin Cities Formation, Unit 2 consists of Quaternary aged glacial till and, similar to Unit 1, is discontinuous at the NB/AH Site. Unit 2 is generally regarded as an aquitard to vertical migration of groundwater; however, sand and gravel lenses may contain water.
- Unit 3: This unit consists primarily of the Quaternary aged Hillside Sand Formation, which is continuous beneath OU2. Near the center of OU2, the Hillside Sand Formation is overlain by the Arsenal Sand, which forms a kame. There is no distinct lithologic contact between the Hillside Sand and the Arsenal Sand, and both are considered included in Unit 3. Unit 3 ranges in thickness from 25 to 450 feet. For monitoring purposes, the Unit 3 aquifer thickness has been arbitrarily subdivided into thirds designated as upper, middle, and lower.
- Unit 4: This unit consists collectively of bedrock from the Prairie du Chien Group and Jordan Formation (Ordovician and Cambrian periods, respectively). For monitoring purposes, the Prairie du Chien Group is referred to as Upper Unit 4, while the Jordan Formation is Lower Unit 4. The Jordan Formation varies from fine- to coarse-grained quartz sandstone. The Prairie du Chien Group in the NB/AH Site area consists of a finely crystalline dolomite of the Oneota Formation, as well as quartz sandstone and dolomite members of the Shakopee Formation. A more detailed description of the bedrock geology can be found in the Remedial Investigation Report (Argonne National Laboratory, 1991).

In order to identify the hydrogeologic unit in which each well is completed, the United States Army Environmental Center (USAEC), formerly the United States Army Toxic and Hazardous Materials Agency (USATHAMA), developed a standardized identification system for wells at the NB/AH Site (referred to as the Army Designation or IRDMIS number). Well designations consist of six characters, such as 03U093. The first two characters represent the hydrogeologic unit in which the well is completed, as follows:

01	-	Unit 1
03	-	Unit 3
04	-	Unit 4: Prairie du Chien Group or Jordan Formation
ΡJ	-	Unit 4: Prairie du Chien Group and Jordan Formation

The third character represents the relative position of the well screen or open hole within the specified hydrogeologic unit, as follows:

U	-	upper portion
Μ	-	middle portion
L	-	lower portion
J	-	Jordan Sandstone
F	-	fully penetrating Unit 3
#	-	open hole (total or partial thickness)

The remaining three characters represent the well number, as follows:

001 thru 500	USAEC wells and additional wells installed by others adjacent to an existing well with the 001-500 designation.
501 thru 600	NB/AH Site wells.
601 thru 800	OU2 Alliant Techsystems wells.
801 thru 999	OU1/OU3 Alliant Techsystems wells.

OU1/OU3 wells installed by parties other than USAEC, the Army, or Alliant Techsystems are designated by their Minnesota unique number. Table B-1 is sorted by unique number, but includes the IRDMIS number and any other name(s) the wells may have. The well type in this table is abbreviated as follows:

UN	-	Unknown
MUNI	-	Municipal
MON	-	Monitoring
DOM	-	Domestic
IND	-	Industrial
P.S.	-	Public Supply
COM	-	Commercial
IRR	-	Irrigation
ABAND	-	Abandoned
PIEZ.	-	Piezometer
REM	-	Remedial

In recent years, as property transfer of the remaining land that is still identified as TCAAP has progressed (and is now nearing completion), it became apparent that an updated well index with more information concerning each well would be of importance to pass on to future land owners. In addition, as groundwater quality continues to improve and contaminant plumes continue to shrink in vertical and horizontal extent, the index will function as a check to make sure that all Army owned wells are sealed and that all traces of the wells are removed from the area.

The FY 2017 Appendix B Table B-1 shows the most current well index. The well index continues to be a work in progress. Additional records regarding individual wells continue to become available as new wells are drilled and older unneeded wells are sealed and removed.

Figures B-2 and B-3 show the location of wells identified in Table B-1. With a known well name, the location of that well can be identified using the "Edit, Find" or "Edit, Search" function and then typing in the desired well name, which will highlight this well name on the figure.

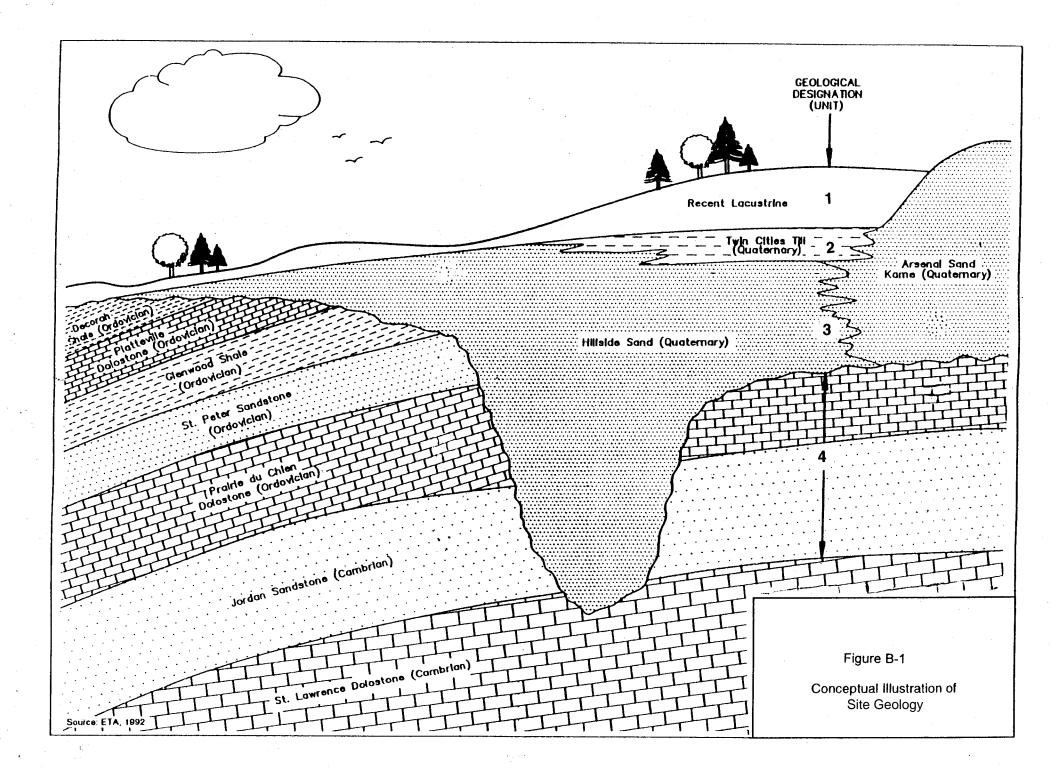
The Appendix B Attachment contains available documentation for each well, including boring logs (if available). The attachment is sorted by Minnesota unique number. To view the information concerning a well, click on the desired well number in the bookmarks.

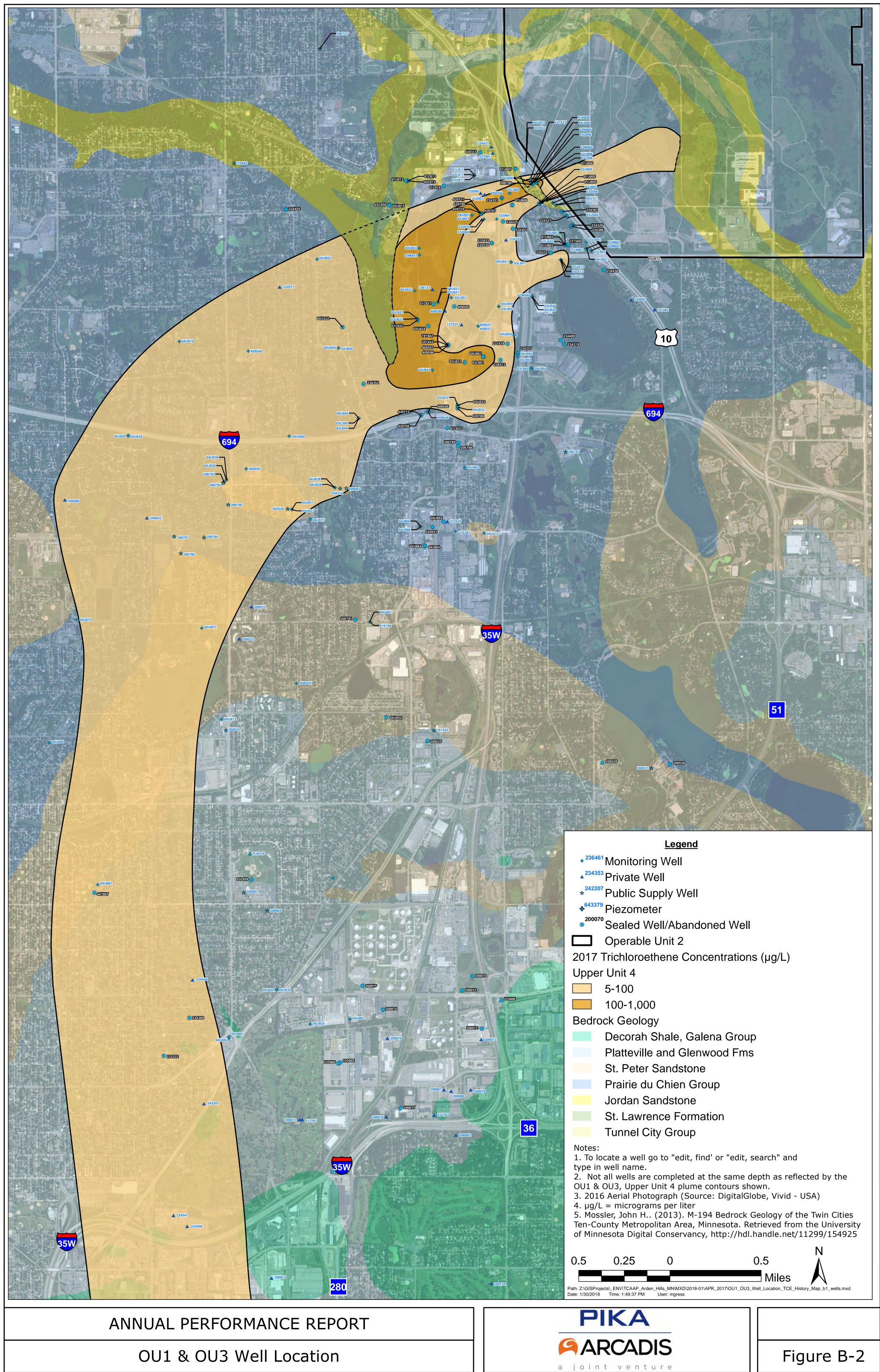
FY 2018 Update

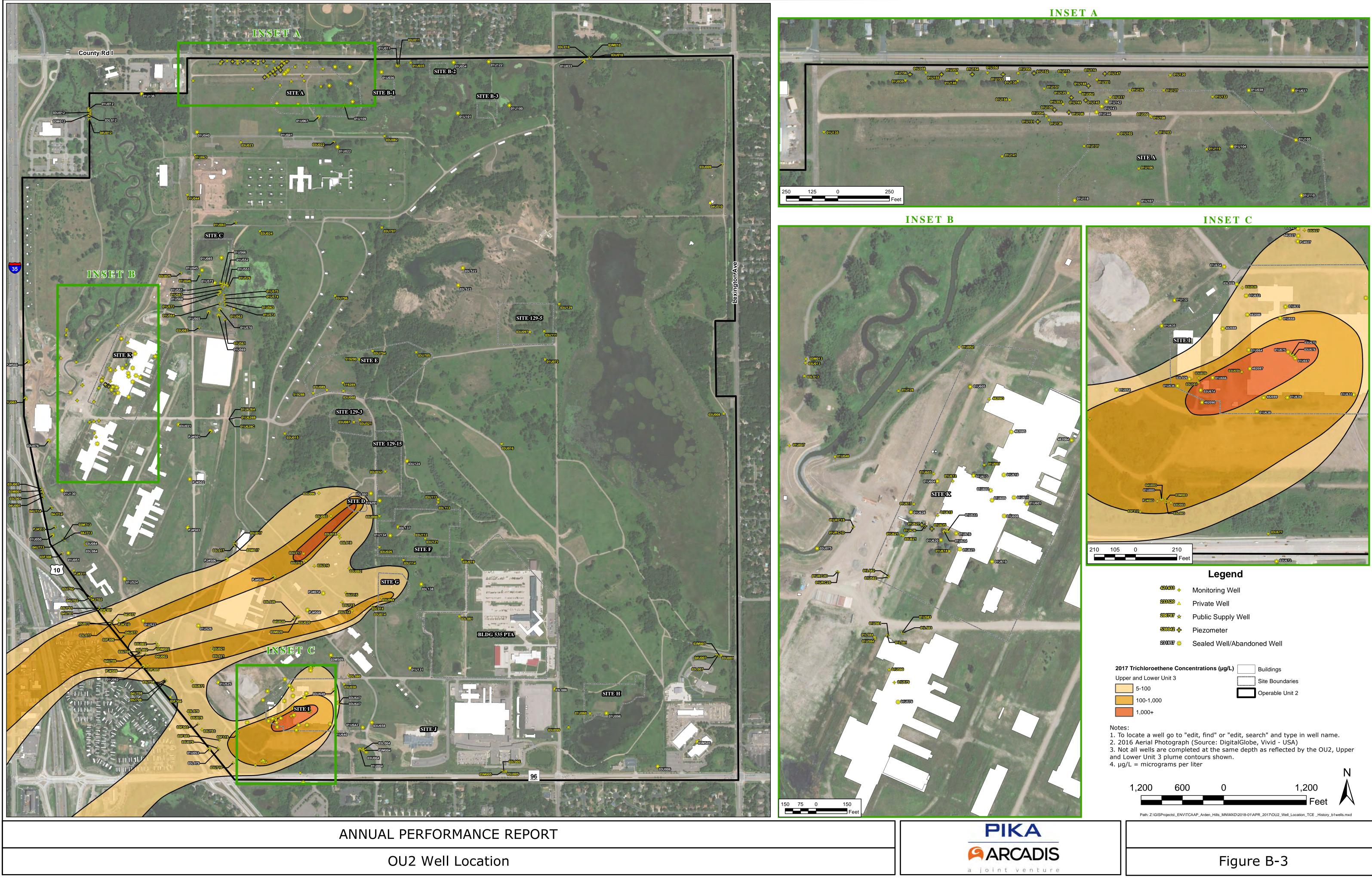
No new wells were added to the database.

Ongoing Efforts to Update Appendix B

- The well index, Table B-1, has been compared with the wells identified in Appendix D, which contains historical water quality and groundwater elevation data. A number of wells were identified in Appendix D that do not exist in the well index. Ongoing efforts will be made to add information, as possible, concerning the location and status of these wells to the well index in Appendix B.
- The repository at the TCAAP office will continue to be utilized to obtain additional well information, where possible.

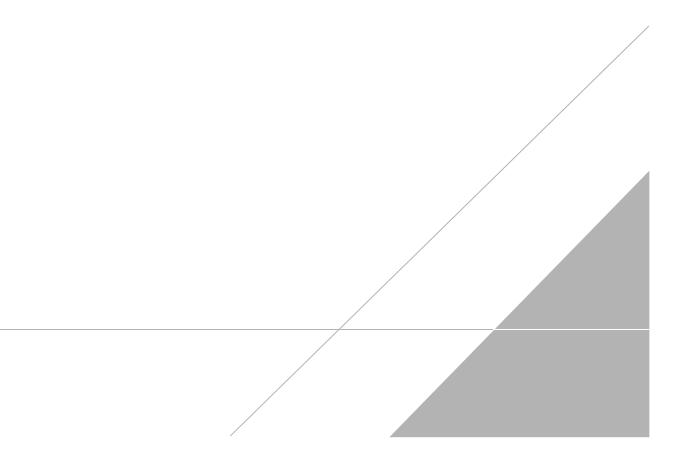

Appendix B Table B-1 contains a summary of all information available concerning a certain well, and is sorted by Minnesota unique well number.


To search for detailed records regarding a well, open the appropriate file below and select the bookmark corresponding to the Minnesota unique well number of the well being searched. If the unique number is unknown for a well, it is included and sorted in the Appendix B Attachment by IRDMIS name or OTHER. Records included in the Appendix B Attachment that may or may not be available for each well include:


- The County Well Index well log,
- Access agreement(s),
- Correspondence related to the well,
- Field notes and boring logs,
- Well construction diagrams,
- Documentation of well modifications, and
- Sealing records.

Appendix B Attachment

- 1. Wells Numbered 104772 through 194772
- 2. Wells Numbered 200070 through 225906
- 3. Wells Numbered 231741 through 235753
- 4. Wells Numbered 236066 through 257443
- 5. Wells Numbered 265735 through 482709
- 6. Wells Numbered 500248 through IRDMIS and OTHER



APPENDIX C

FY 2018 Data Collection and Management

Appendix C.1 Data Collection, Management and Presentation Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

1.0 INTRODUCTION

A groundwater monitoring program was initiated in January 1984 to obtain water level and water quality data at OU1, OU2 and OU3. Each year has been divided into quarters with each quarter assigned a number. Accordingly, FY 2018 was comprised of Quarter 137 (October through December), Quarter 138 (January through March), Quarter 139 (April through June), and Quarter 140 (July through September). Water sampling, water level measurements, and laboratory analyses were conducted in accordance with the "Quality Assurance Project Plan (QAPP) for Performance Monitoring" (Wenck, Revision 15, February 15, 2016), which covers all sites.

Prior to November 1, 2001, data collected from OU1, OU2 and OU3 was stored in the U.S. Army Environmental Command (USAEC) Installation Restoration Data Management Information System (IRDMIS). USAEC replaced the IRDMIS System on November 1, 2001, with a new system, the Environmental Restoration Information System (ERIS), which incorporated all the data that had previously been entered into IRDMIS. The Army has continued to enter data into ERIS; however, ERIS is not being used as the primary database for the OU1, OU2 and OU3 data. The historical databases in Appendix D.1 are the primary databases.

Appendix C.1 Data Collection, Management and Presentation Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

2.0 GROUNDWATER LEVELS AND GROUNDWATER QUALITY

2.1 Data Collection and Management

Groundwater level and groundwater quality data were collected in accordance with the FY 2018 Annual Monitoring Plan (Appendix A), which established the monitoring responsibilities for both the Army and Orbital ATK (formerly Alliant Techsystems). In response to the discovery of 1,4-dioxane in the area, a "major" sampling event was conducted in June of FY 2016 as indicated in the FY 2016 Annual Monitoring Plan. The sampling event for FY 2016 would otherwise have been a "minor" event. Additionally, the Army conducted a "major" well inventory sampling event in FY 2016. Due to these changes, the monitoring plan for future years was modified accordingly to include a "major" well inventory sampling event once every four years and maintain a biennial trend of "major" sampling events at all other sites. The FY 2018 was therefore a major sampling event. All FY 2018 sampling included 1,4-dioxane analyses at all VOC sampling locations, except as stated in Appendix A.4.

Water level monitoring and water sampling were conducted by JV for the Army and by GHD (formerly CRA) for Orbital ATK. Laboratory analysis of VOC samples from all sites was performed by ALS Laboratory Group, Salt Lake City, Utah. Laboratory analysis of 1,4-dioxane samples from all sites was performed by ALS Laboratory Group, Middletown, Pennsylvania. Appendix A.4 contains lists of required analytes, as referenced by the monitoring plans in Appendix A. The lists are site-specific, based on the chemicals of concern. At sites other than Site C, halogenated volatile organic compounds are the parameters of primary interest, though some of the sites (or specific wells at a site) are sampled for aromatic volatile organic compounds and/or metals. At Site C, dissolved lead is the only chemical of concern. Appendix C.2 presents deviations from the FY 2018 Annual Monitoring Plan.

Data verification and validation was conducted in accordance with procedures and requirements outlined in the QAPP and Addendum #1. Data qualifiers assigned to data through data verification and/or data validation appear in the data tables included within the individual sections of this report, with qualifier definitions given in footnotes to the tables. Data qualifiers are also included in the historical databases (Appendix D.1), which include a database of organic water quality, a database of inorganic water quality (excluding Site C), and a database for Site C water quality (for both groundwater and surface water). Data verification was performed by JV for the JV-collected data and by GHD for the GHD-collected data. Data validation was performed by Diane Short & Associates for the JV-collected data and by GHD for the GHD-collected data. Data verification and validation information from the two sampling firms was compiled into quarterly Data Usability Reports (DURs) that were submitted to the Minnesota Pollution Control Agency (MCPA) and United States Environmental Protection Agency (USEPA) for review. If any MPCA/USEPA-requested revisions were necessary, a final DUR was resubmitted. The final MPCA/USEPA approval letter has not yet been received for the FY 2018 DURs, but will be included in Appendix C.3.

Appendix C.1 Data Collection, Management and Presentation Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

For water level measurements, the depth to water from the surveyed top of the well casing elevation was measured. Groundwater elevations were calculated by subtracting the depths to water from the surveyed top of the well casing elevations and are included in the historical water elevation database (Appendix D.1).

2.2 Groundwater Elevation Contour Maps

The most extensive water level monitoring event performed during FY 2018 was in June and July (Quarter 139 and 140). This data was used to prepare groundwater elevation contour maps for deep groundwater at OU1/OU3 and OU2 (OU3 is shown on the same figure as OU1 in the OU1 section of this report), and for shallow groundwater at Sites A, C, K and Building 102. Groundwater elevation contour maps are included within the individual sections of this report. There is not a comprehensive water level event for shallow groundwater at Site I, given the well sealing that has been done.

2.3 Groundwater Quality Contour Maps and Cross-Sections

The most extensive sampling event performed during FY 2018 was in June and July (Quarter 139 and 140). This data were used to prepare updated groundwater quality isoconcentration contour maps and/or cross-sections for deep groundwater at OU1/OU3 and OU2 (OU3 is shown with OU1 on Section 3 Figures) and shallow groundwater at Site A, Site C, Site K and Building 102. Site I is excluded, given the well sealing that has been done. Contour maps were generated by hand, based on the observed contaminant concentrations and the extent of past site contamination. These maps are included in the Figures Section of this report.

For deep groundwater at OU1/OU3 and OU2, isoconcentration maps and cross-sections are provided for trichloroethene and 1,4-dioxane, since these are the primary chemicals of concern on a concentration basis. These isoconcentration maps include individual maps for Upper and Lower Unit 3 Combined, Upper Unit 4, and Lower Unit 4. To complement the isoconcentration maps, cross-sections were prepared to illustrate the vertical distribution of trichloroethene and 1,4-dioxane. One section line passes through the source area at Site G in OU2 and follows the north plume (OU1) through well 582628 (NBM#15) of the New Brighton Contaminated Groundwater Recovery System (NBCGRS). A second section line follows the OU2/OU1 boundary. A third section lines passes through the source area at Site I and follows the north plume (OU1) south to well 04U852, drawn further east but running roughly parallel with the first section line.

Contaminant concentrations for Middle Unit 3 wells and wells that fully penetrate Unit 3 (03F) (including any recovery wells that fully penetrate Unit 3 and that are being sampled as a monitoring well) are shown in parentheses on the Lower Unit 3 isoconcentration maps, but were not used for contouring purposes except when no Lower Unit 3 wells are located in the vicinity.

For Site A shallow groundwater, an isoconcentration map is provided for cis-1,2-dichloroethene, since this is the chemical of concern with the largest aerial extent at Site A, and for tetrachloroethene, which illustrates the source

area and contaminant degradation. Cross-sections were also prepared for Site A to illustrate the vertical distribution of cis-1,2-dichloroethene. The isoconcentration maps for Site A were prepared only for Unit 1, since this is the only contaminated aquifer.

For Site C shallow groundwater, an isoconcentration map is provided for dissolved lead, since this is the only chemical of concern at Site C. Results for surface water monitoring are also shown on the same map to show impacts to surface water are not occurring as a result of the shallow groundwater contamination. Cross-sections were also prepared for Site C to illustrate the vertical distribution of dissolved lead. The isoconcentration map for Site C was prepared only for Unit 1, since this is the only contaminated aquifer.

For Site K shallow groundwater, an isoconcentration map is provided for trichloroethene, since this is the primary chemical of concern on a concentration basis. The isoconcentration map for Site K was prepared only for Unit 1, since this is the only contaminated aquifer.

For Building 102 shallow groundwater, a concentration map is provided for vinyl chloride, since this is the chemical of concern that has historically had the largest aerial extent at Building 102, and for trichloroethene and cis-1,2-dichloroethene, to illustrate the source area and contaminant degradation. A cross-section was also prepared for Building 102 to illustrate the vertical distribution of vinyl chloride. The isoconcentration maps for Building 102 were prepared only for Unit 1, since this is the only contaminated aquifer.

Contaminant concentrations for recovery wells that are actively pumping are shown in parentheses on the isoconcentration maps. These values were considered, but were generally not used alone to prepare the isoconcentration contours. Concentrations of recovery wells generally represent an average contaminant value for all groundwater being drawn to the well; hence, the concentrations do not necessarily represent a discrete location or depth. Contaminant concentrations for recovery wells that are not actively pumping are fully utilized for purposes of contouring.

All Shallow and Deep Groundwater VOC Sites

June 2018: At all well locations where volatile organic compound (VOC) samples were scheduled to be collected (with the exception of Site A), samples for 1,4-dioxane were also collected at the same time, as requested by the USEPA and MPCA, in accordance with Quality Assurance Project Plan (QAPP) Addendum #1 (Wenck, May 21, 2015).

July & August

2018: The June 2018 sampling event carried over from to July and August 2018 due to scheduling conflicts.

OU1: Deep Groundwater

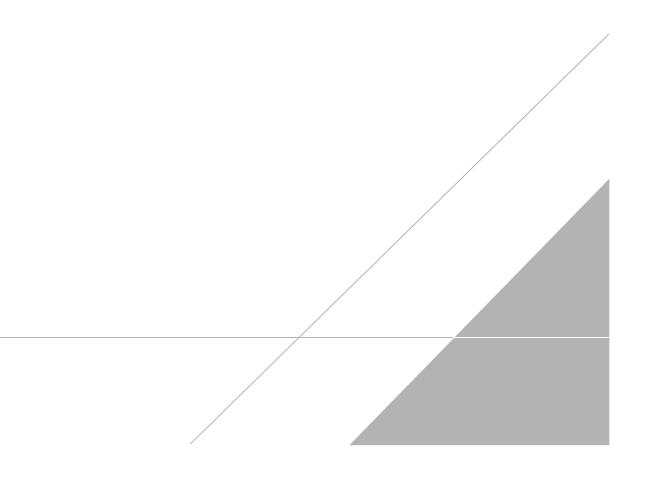
July 2018:

Cloverpond: The well was not operational and could not be sampled. Honeywell: The well was not operational and could not be sampled. An alternate well was documented on location but was not sampled during the 2018 sampling event due to access issues.

OU2: Site A Shallow Groundwater

July 2018:

- 01U108: An obstruction prevented the sampling pump from being deployed in the well; therefore, the well could not be sampled.
- 01U350: Sampled as an alternative to well 01U108.


OU2: Site K Shallow Groundwater

June 2018:

- 01U608: The well was intended to be reinstalled in 2017, but reinstallation was pushed back due to delays associated with redevelopments of the Site; therefore, the well could not be sampled.
- 01U609: The well was intended to be reinstalled in 2017, but reinstallation was pushed back due to delays associated with redevelopments of the Site; therefore, the well could not be sampled.
- 01U611: The well was intended to be reinstalled in 2017, but reinstallation was pushed back due to delays associated with redevelopments of the Site; therefore, the well could not be sampled.
- 01U667: The well was intended to be reinstalled in 2017, but reinstallation was pushed back due to delays associated with redevelopments of the Site; therefore, the well could not be sampled.

APPENDIX D

Comprehensive Groundwater Quality and Groundwater Level Databases

Appendix D.1 Comprehensive Groundwater Quality and Groundwater Level Databases FY 2018 FY 2017 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

The historical groundwater databases are located on this CD in a folder named Appendix D.1. This folder contains four Microsoft Excel files:

File	<u>Contents</u>
Compelev_FY18	Groundwater elevations
Comporwq_FY18	Groundwater quality: organic data
Compinwq_FY18	Groundwater quality: inorganic data (excluding Site C)
Site C wq_FY18	Groundwater quality: inorganic data (Site C only)

Group 1 – Downgradient of TGRS

03U806	04U806	03L802	03U801
03M806	PJ#806	04U802	03U711
03L806	03M802	PJ#802*	04U711

Group 2 – Areal Extent of Plume

03U805	409557	04U841	04U875
03U672 abandoned	04U673	04U843	04U877
03L848	04U832	04U833	206688 out of service
03L673	04U845	04U846	04U849
03L833	04U854	04U861 abandoned	04U821
03L859	04U859	409549	191942 abandoned

Group 3 ** – Downgradient Sentinel

04U871 04U	875 04U851	
------------	------------	--

Group 4 – Lateral Sentinel

03U831 abandoned	03L846	409556	409548
03U811	03L832	04U855	04U839
03U804	03L861 abandoned	04U879	04U838
03U673	03L854	04U860	04U848
03U672 abandoned	03L841	409547	04J839
03M843	03L811	04U863	03U677

Appendix D.2.1.1 Statistical Evaluation – Well Groups Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Group 5 – Global Plume

04J077	04U702	04U848	04U877
04J702	04U709	04U851	04U879
04J708	04U711	04U852 abandoned	04U880
04J713	04U713	04U855	04U881
04J834	04U802	04U859	04U882
04J864 abandoned	04U806	04U860	200154
04J866	04U832	04U861 abandoned	234546
04J882	04U833	04U863	234549
			out of service
04U002	04U834	04U864 abandoned	409547
04U020	04U841	04U865 abandoned	409548
04U027abandoned	04U843	04U866	409549
04U077	04U844	04U871	409555
04U673	04U845	04U872	512761
04U701	04U846	04U875	PJ#318

Group 5 Unit 3 wells (evaluated as individual trends)

03L822	03U821	03U822	03L822
409550	409596	409597	03U831
	abandoned	abandoned	abandoned

Group 6 – Jordan Aquifer

04J077	04J838	04U713	04U882
04J702	04J839	04U834	NBM#3
04J708	04J882	04U836	NBM#4
04J713	04J847	04U837	NBM#5
04J822	04J849	04U838	NBM#6
04J834	04U077	04U839	
04J836	04U702	04U847	
04J837	04U708	04U849	

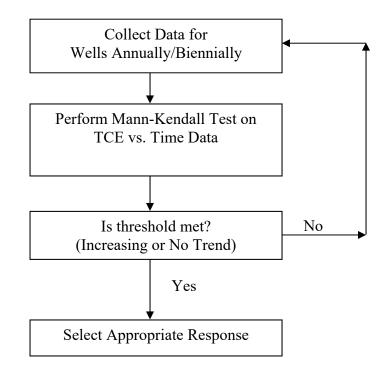
- * PJ#802 will not be monitored or used for evaluation unless 04U802 shows TCE concentrations greater than 1 ppb.
- ** Group 3 is analyzed as a rectangular area taken from the Group 5 contouring.

arcadis.com G:\PROJECTS\TCAAP\Documents\Annual Performance Reports\FY18 APR\Appendices\Appendix D\Appendix D.2.1\App D.2.1.1_Well Groups.docx

Mann-Kendall S	Mann-Kendall P	Trend Conclusion
S > 0	P < / = 0.05	Increasing
S > 0	P < / = 0.10	Probably Increasing
S = 0	P < / = 0.05	Stable
S < 0	P < / = 0.10	Probably Decreasing
S < 0	P < / = 0.05	Decreasing
Any 'S'	P > 0.05	No Significant Trend

Well Group	Purpose	Measure	Time Window/ Monitoring Frequency	Test	Response Threshold
Group 1	AWC Immediately Downgradient of TGRS	AWC Trend	6 years/annual	Mann-Kendall	Stable, Increasing, or No Trend
Group 2	Defining Plume Size (Low Concentration Edges)	Individual Well Trend for TCE	12 years/biennial	Mann-Kendall	Increasing or No Trend
Group 3	AWC Immediately Downgradient of NBCGRS	AWC Trend	12 years/biennial	Mann-Kendall	Stable, Increasing, or No Trend
Group 4	Lateral (Clean) Sentinel Wells	Individual Well Concentration	12 years/biennial	Individual Concentrations	Greater than ROD goals
Group 5	Global Plume Mass Reduction	AWC Trend	12 years/biennial	Mann-Kendall	Stable, Increasing, or No Trend
Group 6 Evaluating and comparing trends in Jordan Aquifer		Individual Well Trend for TCE	12 years/biennial	Mann-Kendall	Stable, Increasing or No Trend

General Notes:


A Response Threshold is the test result(s) that triggers further response. See text for additional explanation of response process.

Acronyms and Abbreviations:

AWC = Area-Weighted Concentration

Appendix D.2.1.4 Evaluation Process FY 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Appendix D.2.1.5 Responses to Threshold Indicators Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

FACTORS TO CONSIDER

- Contaminant concentrations
- Location (vertical and horizontal)
- Surrounding data
- Risks to human health or the environment
- Need for urgency in response

POSSIBLE EVALUATION RESPONSES

- Perform additional or confirmation sampling
- Write up in the Annual Performance Report
- Perform separate evaluation and write-up (Tech Memo)

POSSIBLE LONG-TERM RESPONSES

- Increase sampling frequency
- Modify operation of remedial system(s)
- Perform new remedy evaluation
- Install additional monitoring well(s)
- Modify the Special Well Construction Area
- Control risk at the receptors

Note: Threshold responses to be described and evaluated in the Annual Performance Reports.

Table 3-3 Group 1, 2, 3, 5, and 6 Mann-Kendall Summary for OU1 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Group	S Value	P Value	R ² Value	Fraction of Detections	Results Trend	Threshold Triggered?	Comments
Group 2 Wells:							
03L673	-24	<0.001	0.860	8 / 8	Decreasing	No	
03L833	-17	0.0240	0.478	8 / 8	Decreasing	No	
03L848	-23	0.00184	0.843	8 / 8	Decreasing	No	
03L859	-23	0.00184	0.893	8 / 8	Decreasing	No	
03U677	NA	NA	NA	0 / 10	NA	No	All ND
03U805	20	0.00710	0.705	8 / 8	Increasing	Yes	Southern edge of north plume, plume shifted slightly
04U673	-16	0.0310	0.0942	8/8	Decreasing	No	Near south plume center, plume shifted slightly
04U821	-18	0.0160	0.603	8/8	Decreasing	No	
04U832	5	0.317	0.105	8 / 8	No Significant Trend	Yes	Relatively stable, between 41 and 59 μg/L since 2005
04U833	-30	<0.001	0.623	9/9	Decreasing	No	
04U841	-21	0.00500	0.690	8/8	Decreasing	No	
04U843	27	<0.001	0.976	8 / 8	Increasing	Yes	Near plume center
04U845	-15	0.0430	0.383	8/8	Decreasing	No	
04U846	19	0.0116	0.676	8 / 8	Increasing	Yes	Near plume center, historically erratic
04U854	-21	0.00500	0.769	8/8	Decreasing	No	
04U859	-27	<0.001	0.923	8 / 8	Decreasing	No	
04U861 (abandoned)	11	0.0280	0.752	6/6	NA	NA	Abandoned after 2006 sample, in New Brighton Development
04U875	-20	0.0220	0.325	4/9	Decreasing	No	
04U877	7	0.272	0.0814	9/9	No Significant Trend	Yes	
206688	-4	0.298	0.00700	6/6	No Significant Trend	Yes	
409549	14	0.0540	0.296	8/8	Probably Increasing	Yes	Near plume center, plume shifted slightly
409557	12	0.0890	0.117	8/8	Probably Increasing	Yes	Between north & south plume, lateral dispersion
Group 1 NP	-5	0.281	0.0971	7 / 7	No Significant Trend	Yes	
Group 1 SP	0	0.563	2010	7 / 7	Stable	Yes	
Group 3	-10	0.0935	0.335	7/7	Probably Decreasing	No	
Group 5	11	0.068	0.463	7/7	Probably Increasing	Yes	
Group 5 Unit 3 Wells:						1	
03L809	-11	0.114	0.470	8/8	No Significant Trend	Yes	Raw trend is decreasing
03L822	-21	0.00500	0.761	8/8	Decreasing	No	Ŭ
03U821	-26	< 0.001	0.786	8/8	Decreasing	No	
03U822	-5	0.317	0.230	8/8	No Significant Trend	Yes	Between 42 and 160 µg/L since 2005
03U831 (abandoned)	9	0.0680	0.405	2/6	NA	NA	Abandoned due to construction after 2007 sampling
409550	-13	0.0720	0.489	8/8	Probably Decreasing	No	Raw trend is decreasing
409596 (abandoned)	-8	0.102	0.633	6/6	NA	NA	Abandoned due to construction after 2007 sampling
409597 (abandoned)	-11	0.0280	0.809	6 / 6	NA	NA	Abandoned due to construction after 2007 sampling

Notes and Abbreviations on Page 2.

Table 3-3 Group 1, 2, 3, 5, and 6 Mann-Kendall Summary for OU1 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Group	S Value	P Value	R ² Value	Fraction of Detections	Results Trend	Threshold Triggered?	Comments
Group 6 OU1 Jordan Wells:							
04J077	-24	0.00630	0.638	9/9	Decreasing	No	
04J702	-24	<0.001	0.570	8 / 8	Decreasing	No	
04J708	20	0.00710	0.678	8 / 8	Increasing	Yes	Southern edge of north plume, plume shifted slightly
04J713	NA	NA	NA	0/8	NA	No	All ND
04J822	-20	0.0220	0.610	9/9	Decreasing	No	
04J834	-20	0.00710	0.685	4 / 8	Decreasing	No	
04J836	22	0.0120	0.668	9/9	Increasing	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04J837	-15	0.0750	0.345	9/9	Probably Decreasing	No	Close proximity to NBCGRS wells, likely influenced by shutdown
04J838	6	0.274	0.0741	8 / 8	No Significant Trend	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04J839	8	0.238	0.134	9/9	No Significant Trend	Yes	Historically Below 5 µg/L
04J847	12	0.250	0.00741	13 / 13	No Significant Trend	Yes	Near plume center
04J849	24	0.00630	0.176	4/9	Increasing	Yes	Historically Below 1 µg/L.
04J882	NA	NA	NA	0 / 8	NA	No	All ND
Group 6 Nested Unit 4 Wells:							
04U077	-26	<0.001	0.858	8 / 8	Decreasing	No	
04U702	-8	0.199	0.0451	8/8	No Significant Trend	Yes	Below 3 µg/L
04U708	-20	0.00710	0.682	4 / 8	Decreasing	No	
04U713	-16	0.0310	0.414	5/8	Decreasing	No	
04U834	-13	0.0720	0.0000615	6/8	Probably Decreasing	No	
04U836	-7	0.272	0.0246	9/9	No Significant Trend	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04U837	-9	0.209	0.354	9/9	No Significant Trend	Yes	Raw trend is decreasing
04U838	5	0.317	0.00262	8 / 8	No Significant Trend	Yes	Historically below 3 µg/L
04U839	26	0.00290	0.642	9/9	Increasing	Yes	Close proximity to NBCGRS wells, likely influenced by shutdown
04U847	-12	0.0890	0.354	8 / 8	Probably Decreasing	No	Raw trend is decreasing
04U849	10	0.138	0.357	8/8	No Significant Trend	Yes	Near plume center, appears relatively stable since 2011
04U882	-15	0.0430	0.491	7/8	Decreasing	No	

General Notes:

Response Threshold triggers are defined in Table D.2.1.3.

Acronyms and Abbreviations:

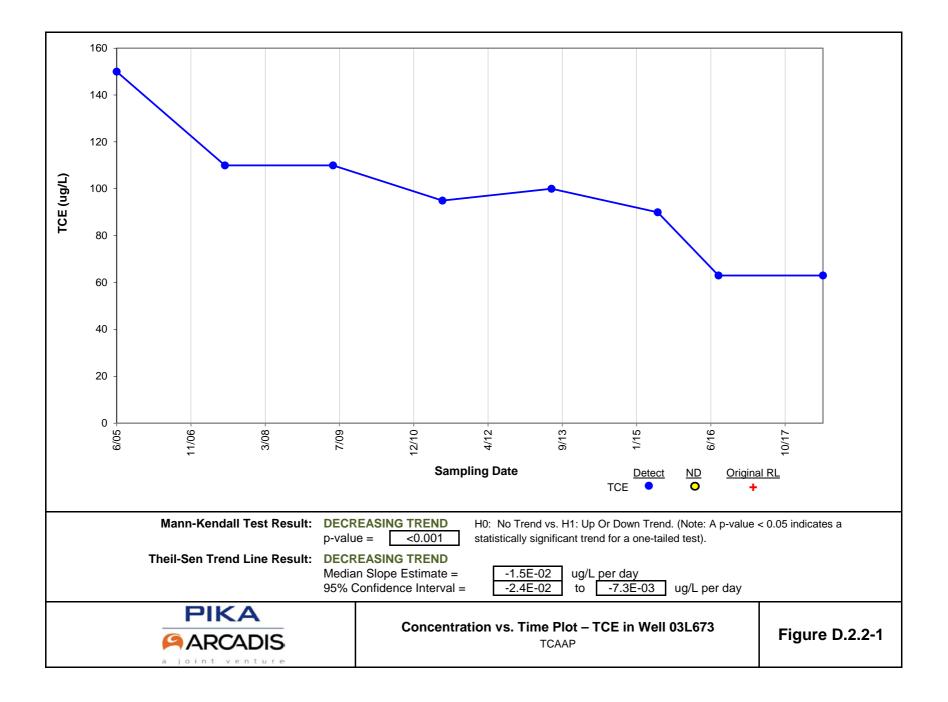
NA = not applicable; trend analysis not performed at this location

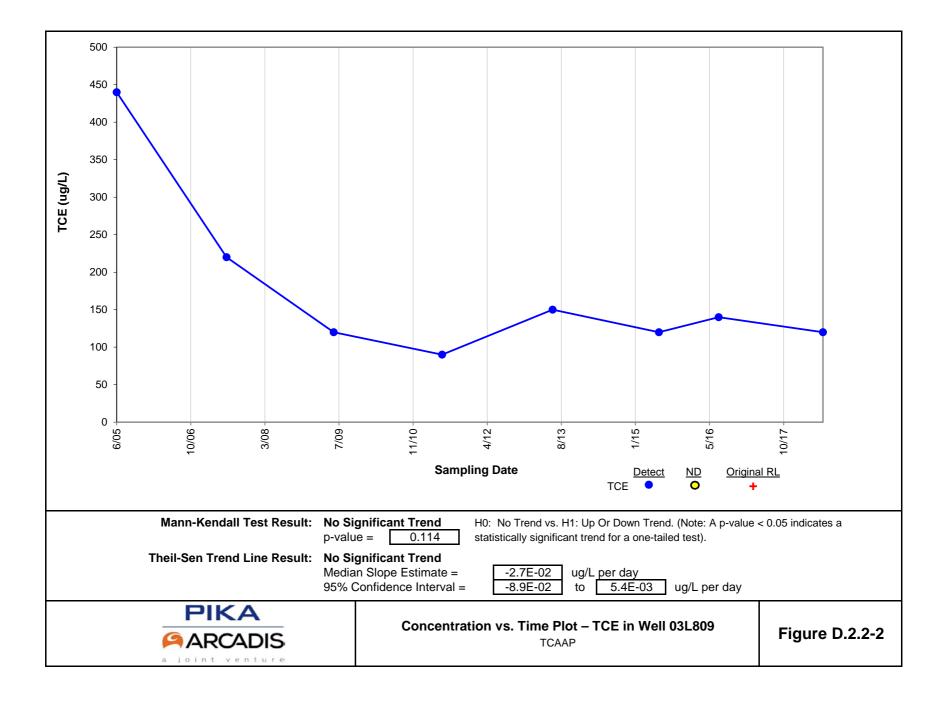
NBCGRS = New Brighton Contaminated Groundwater Recovery System

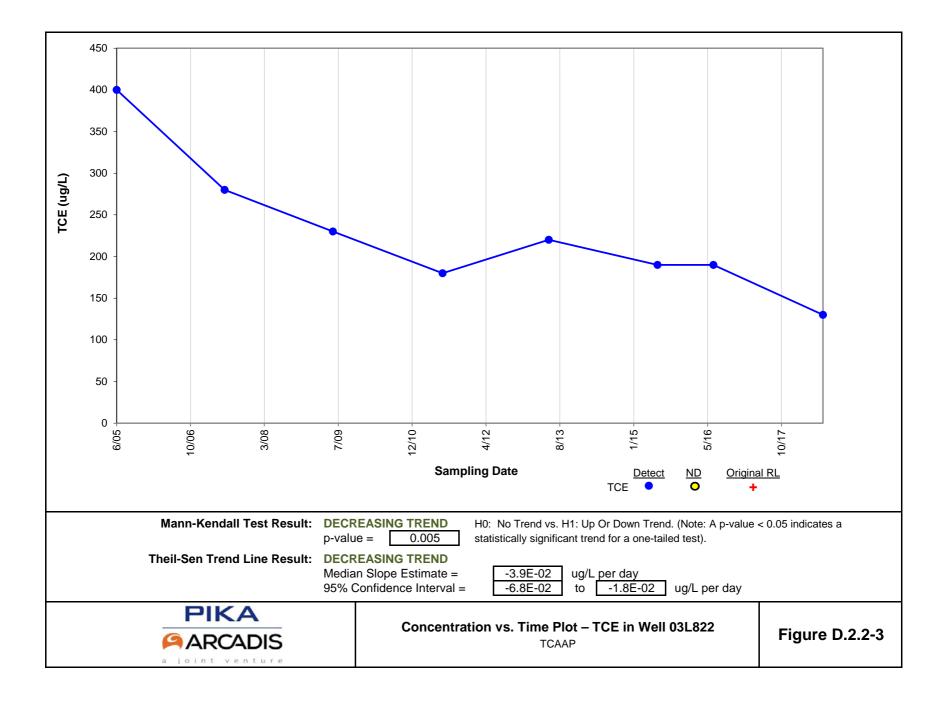
ND = non-detect

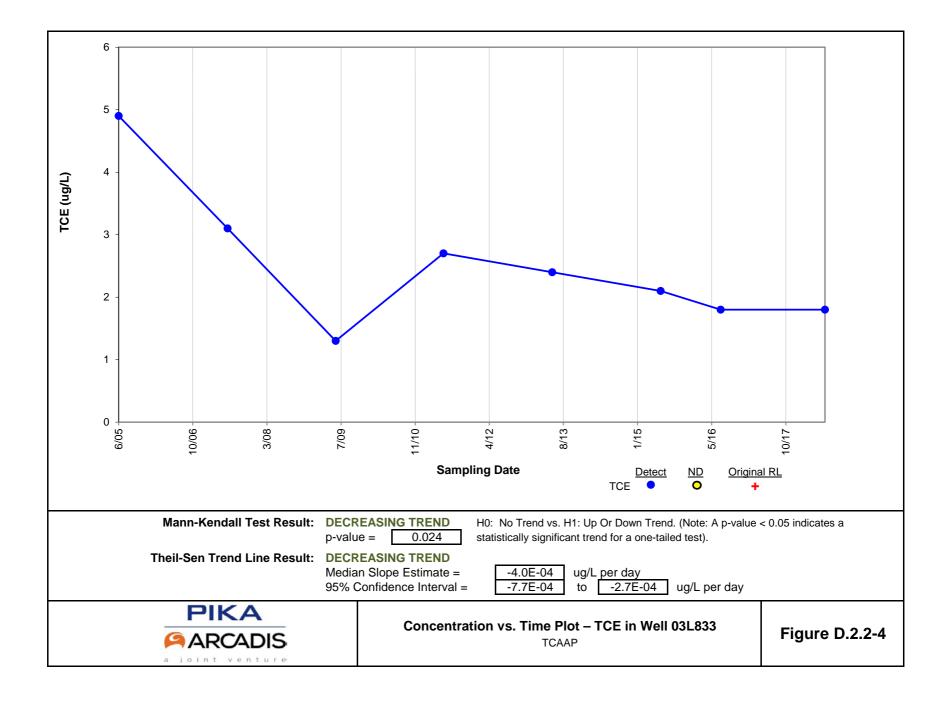
NP = North Plume

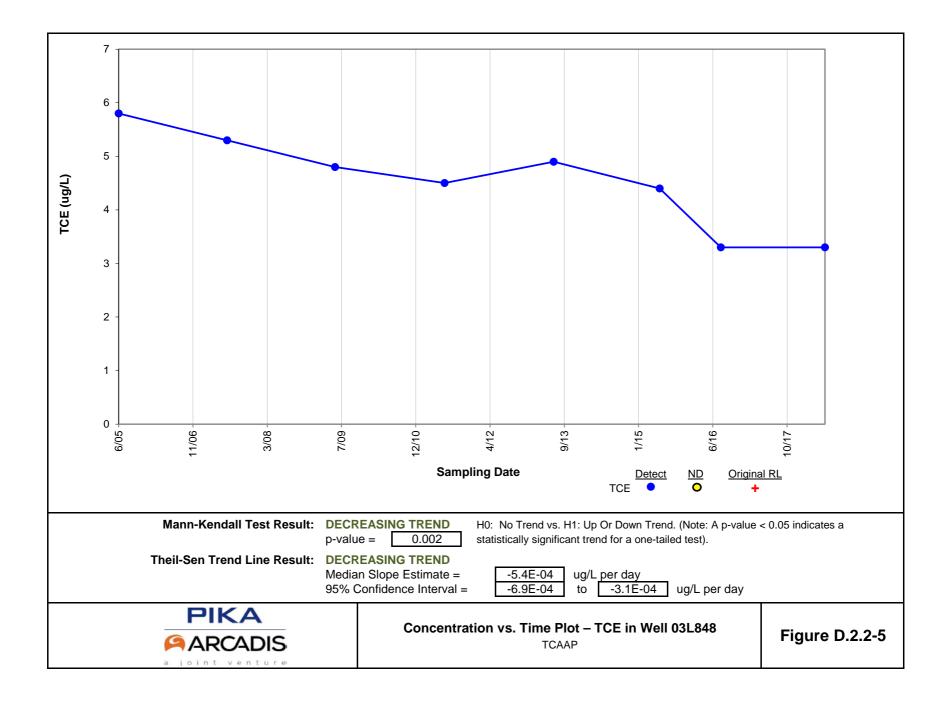
OU = Operable Unit

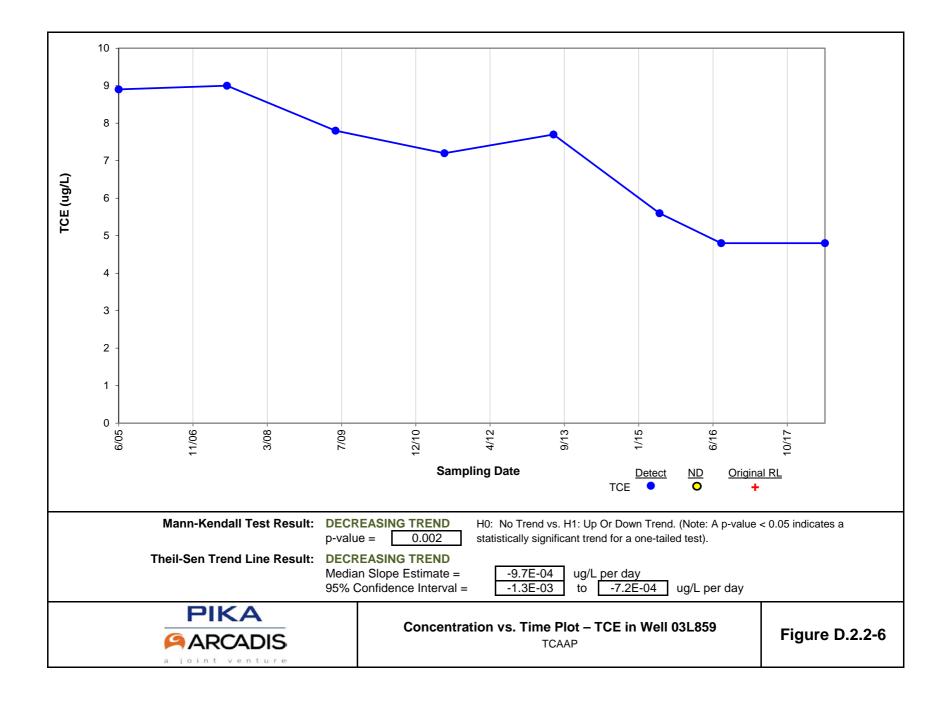

P Value = represents uncertainty in the trend

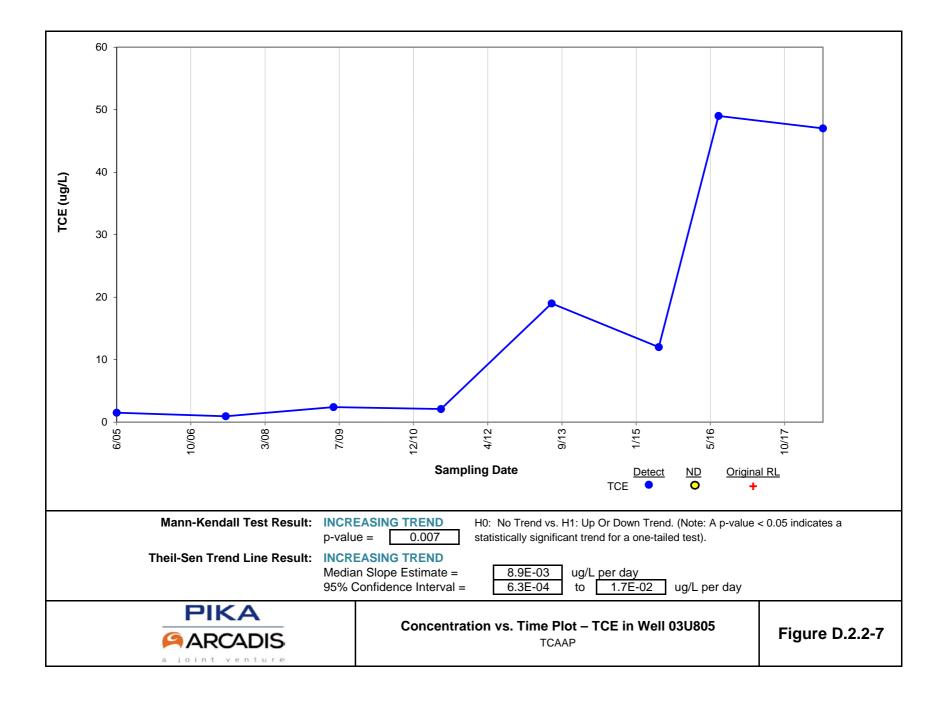

 R^2 Value = represents the fit of the data to the regression

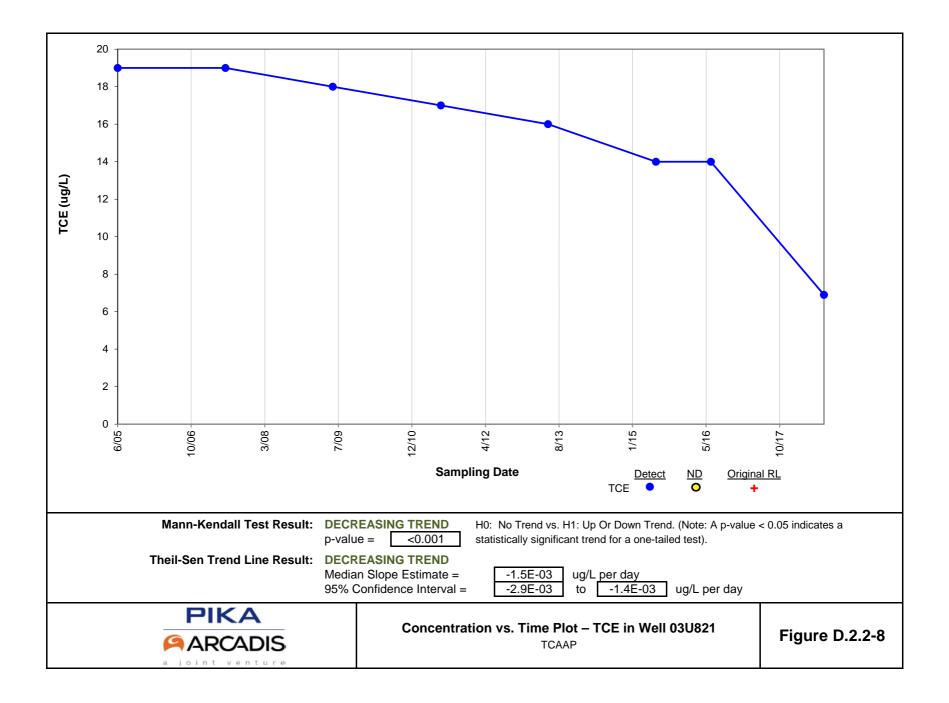

S Value = indicates increasing (positive S) or decreasing (negative S) trend

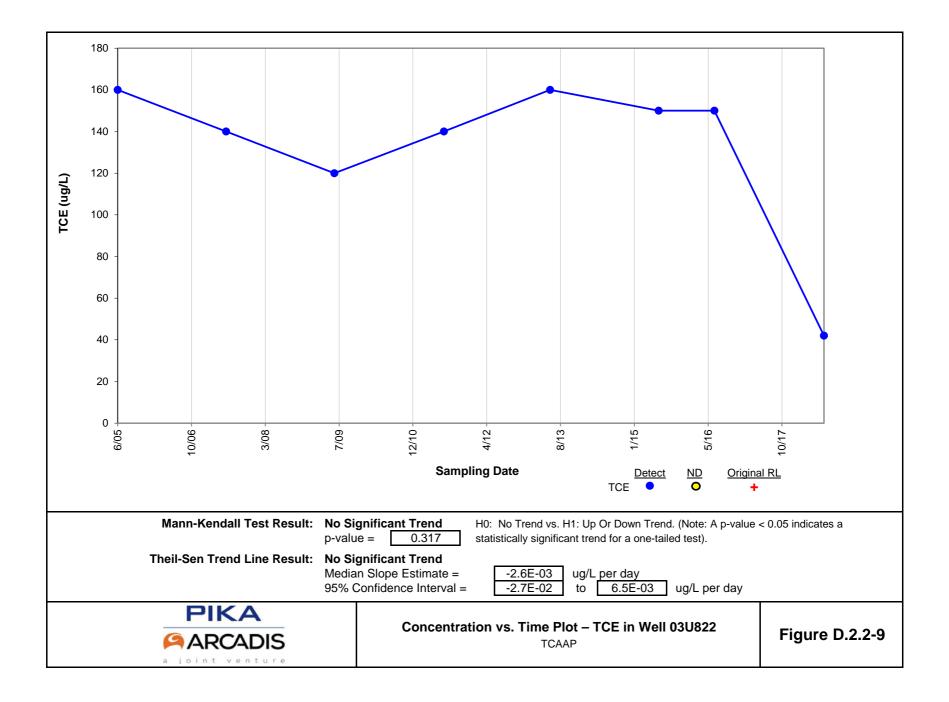

SP = South Plume

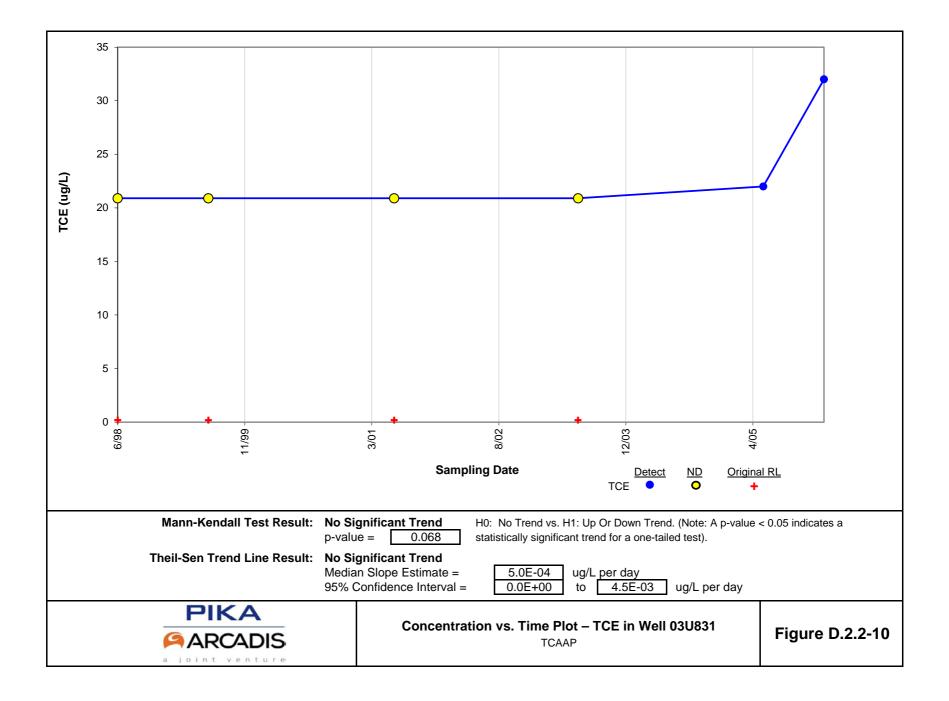

µg/L = micrograms per liter

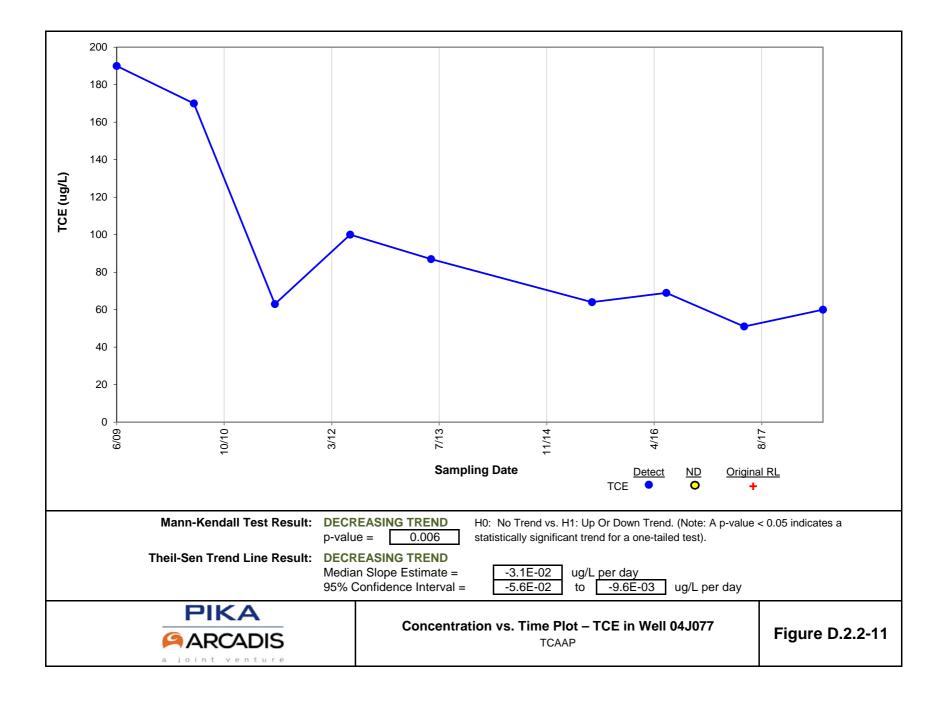


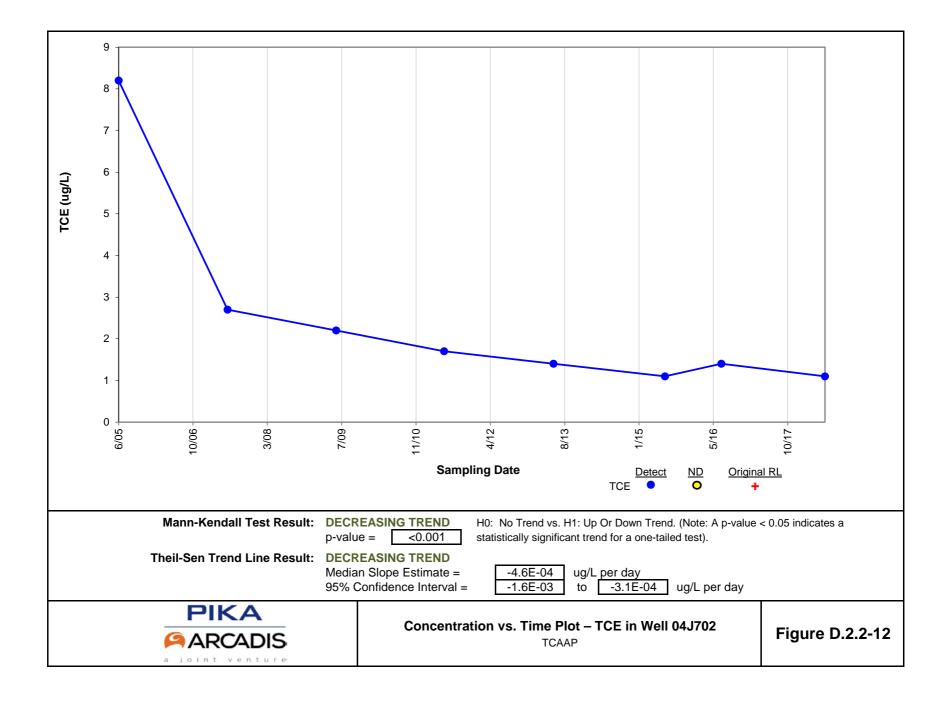


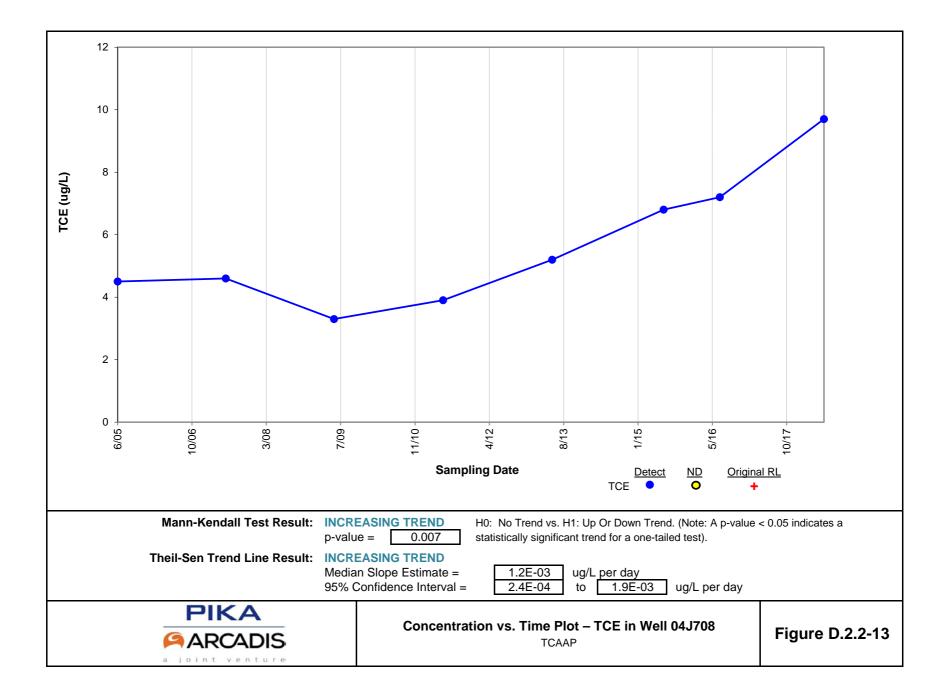


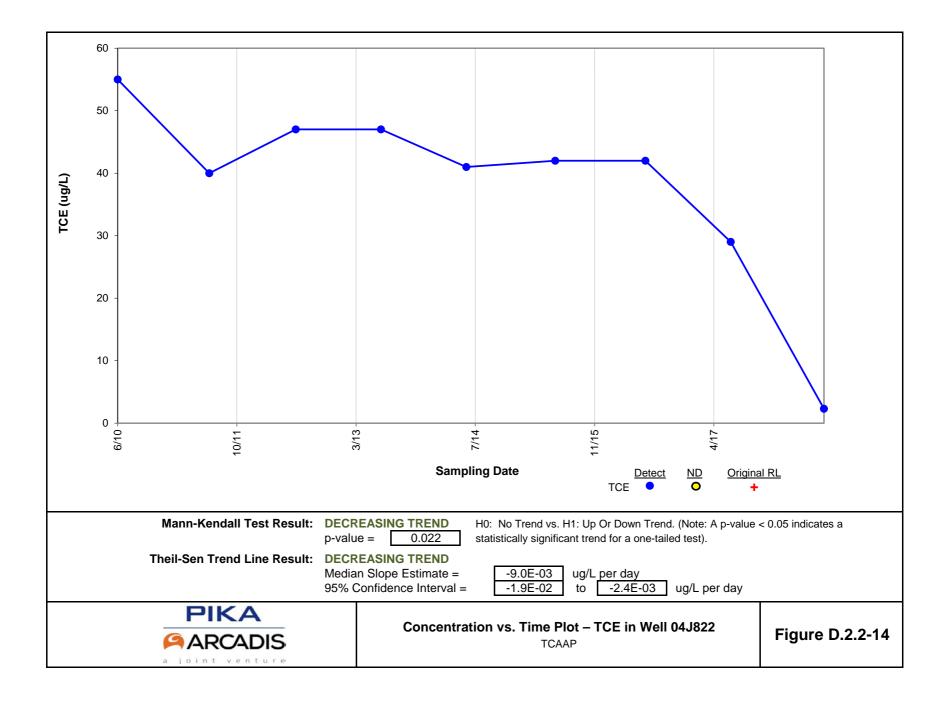


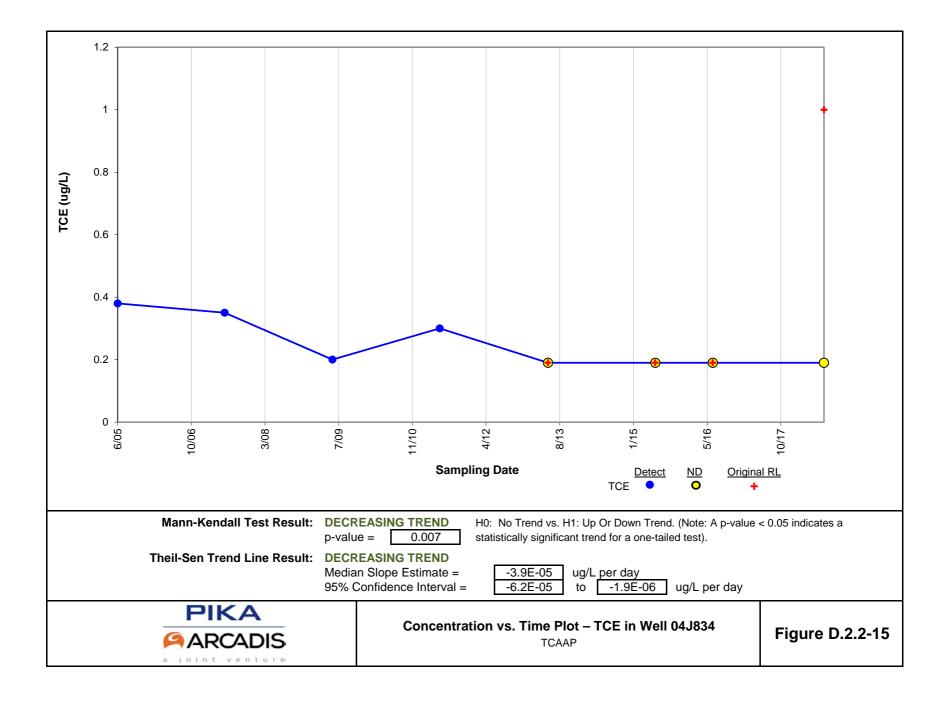


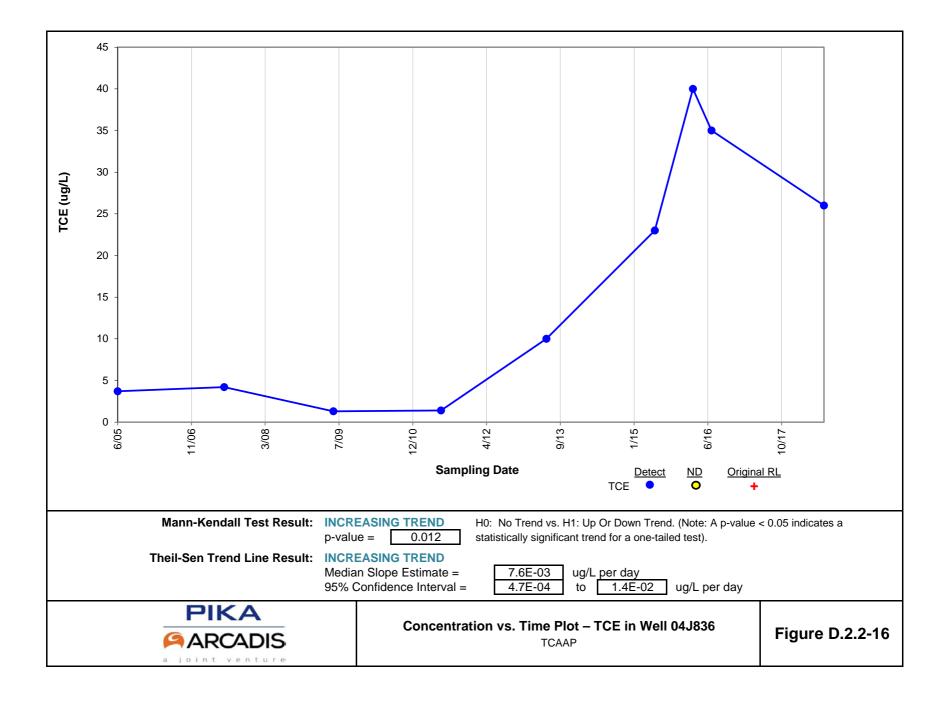


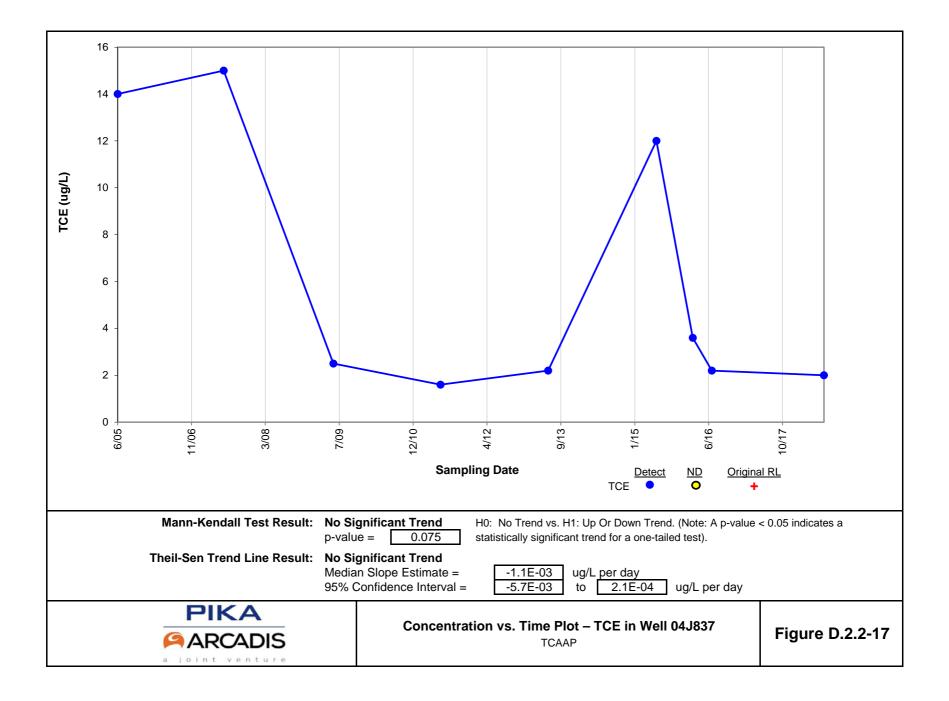


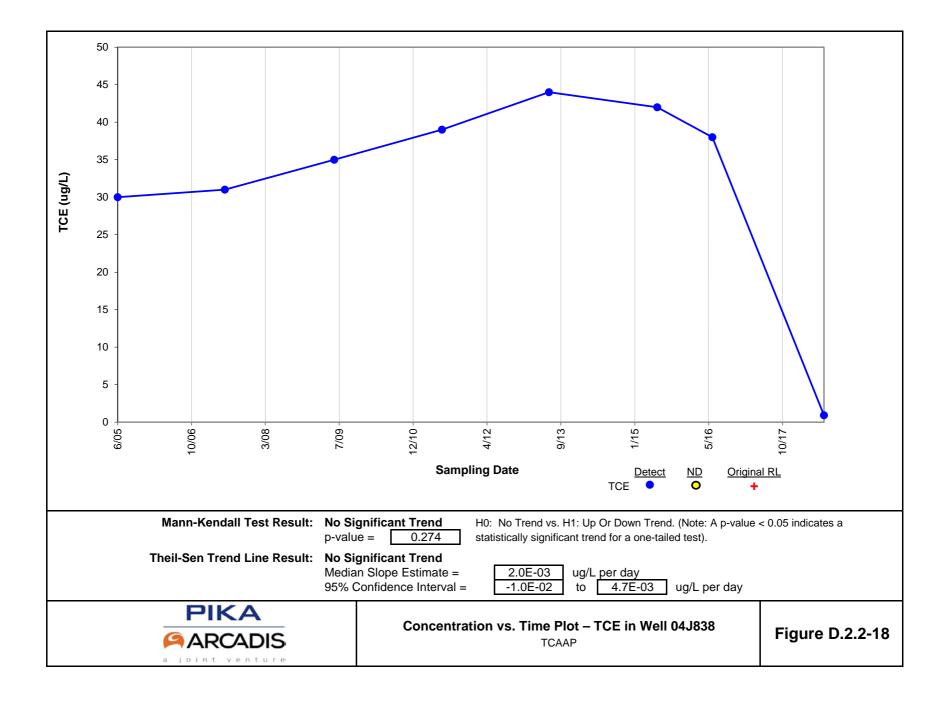


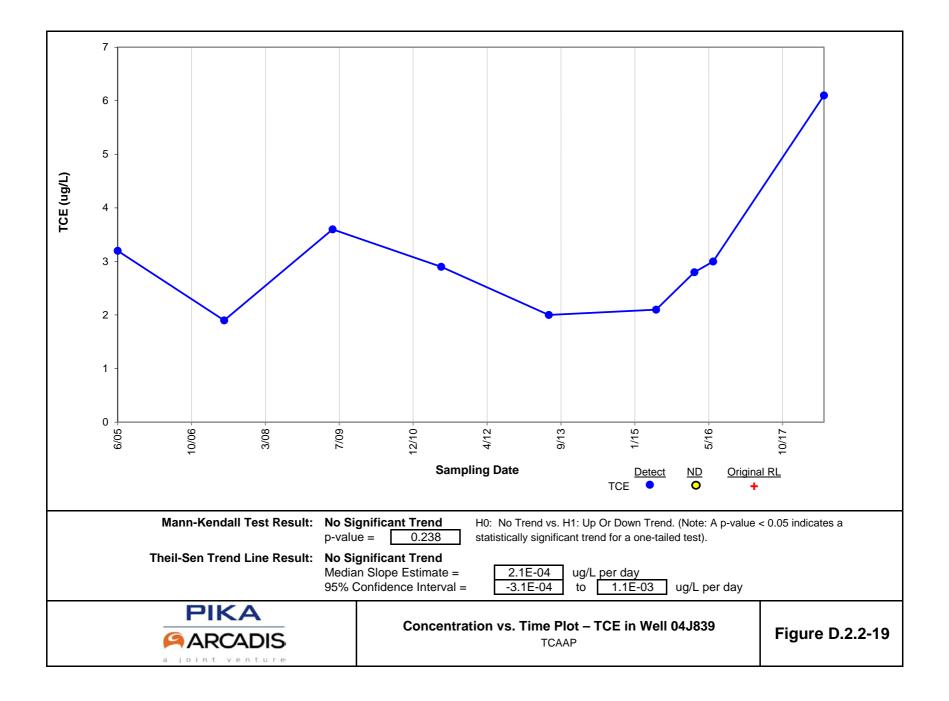


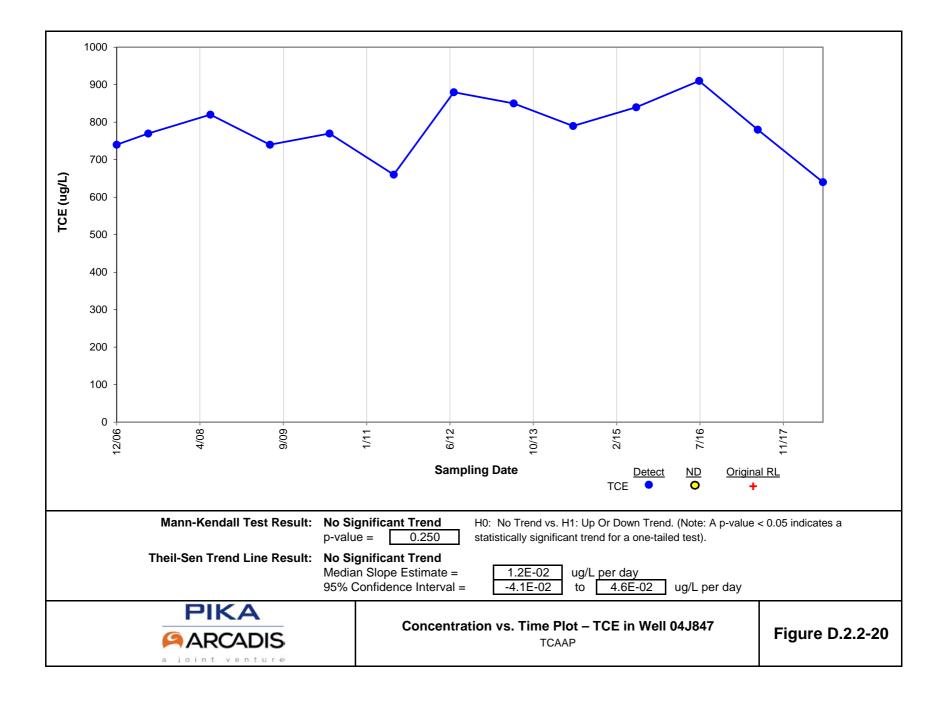


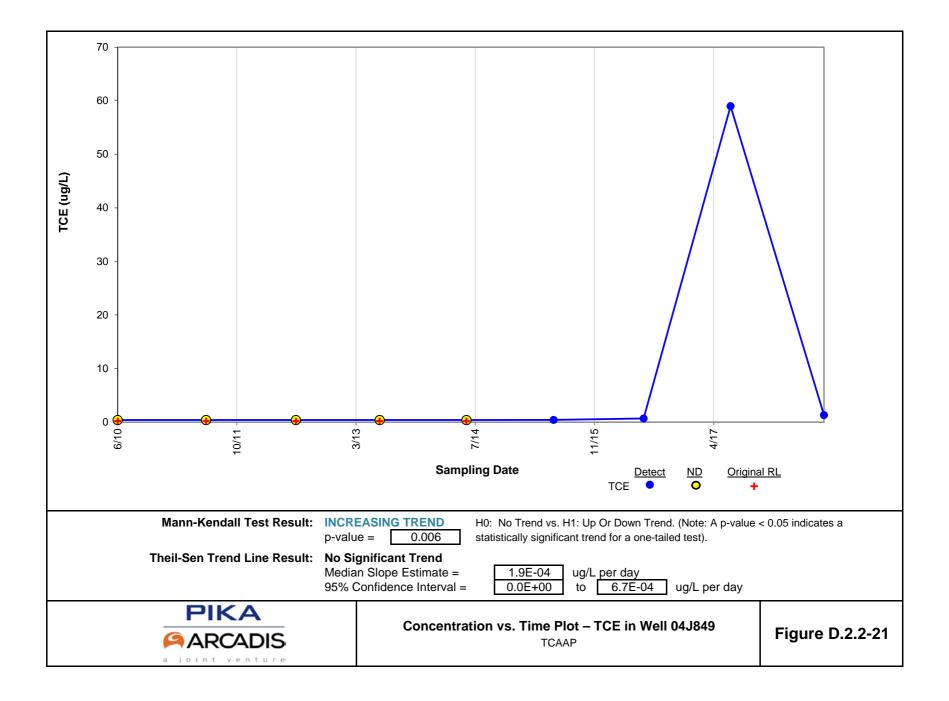


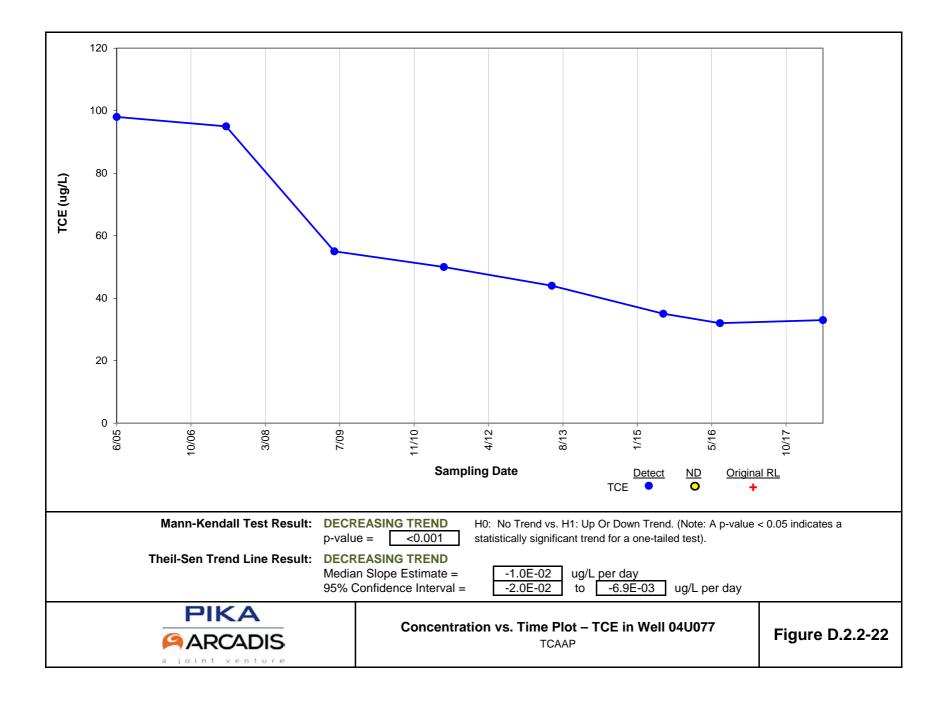


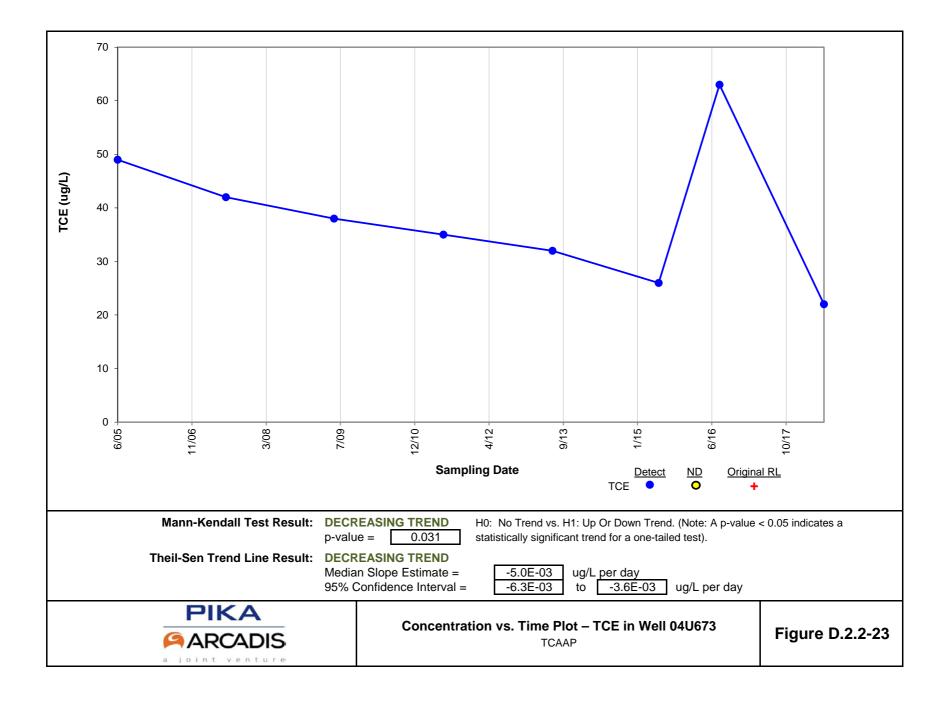


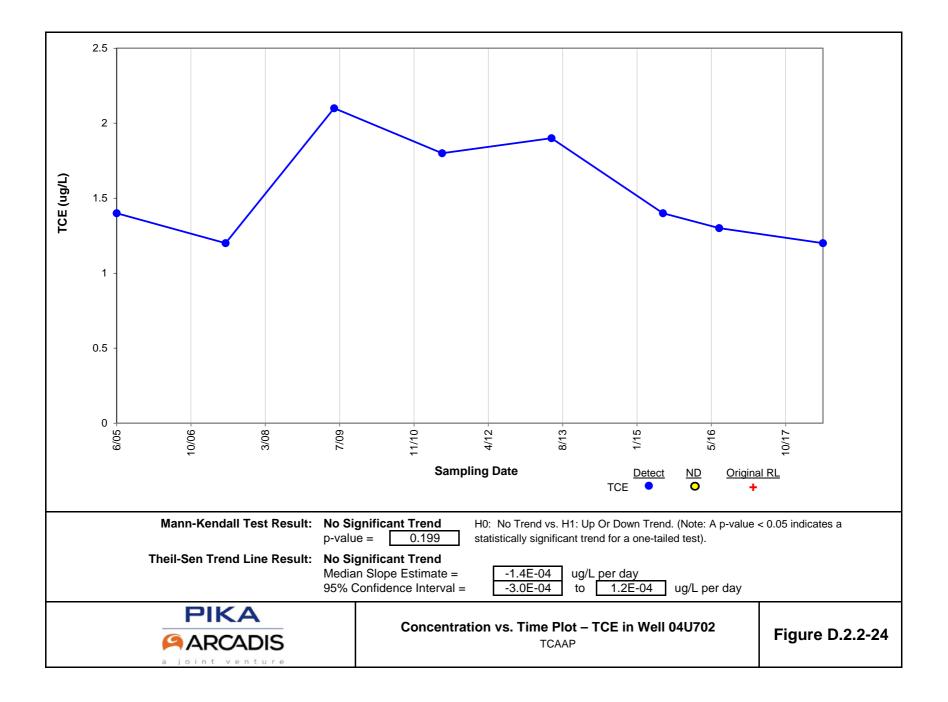


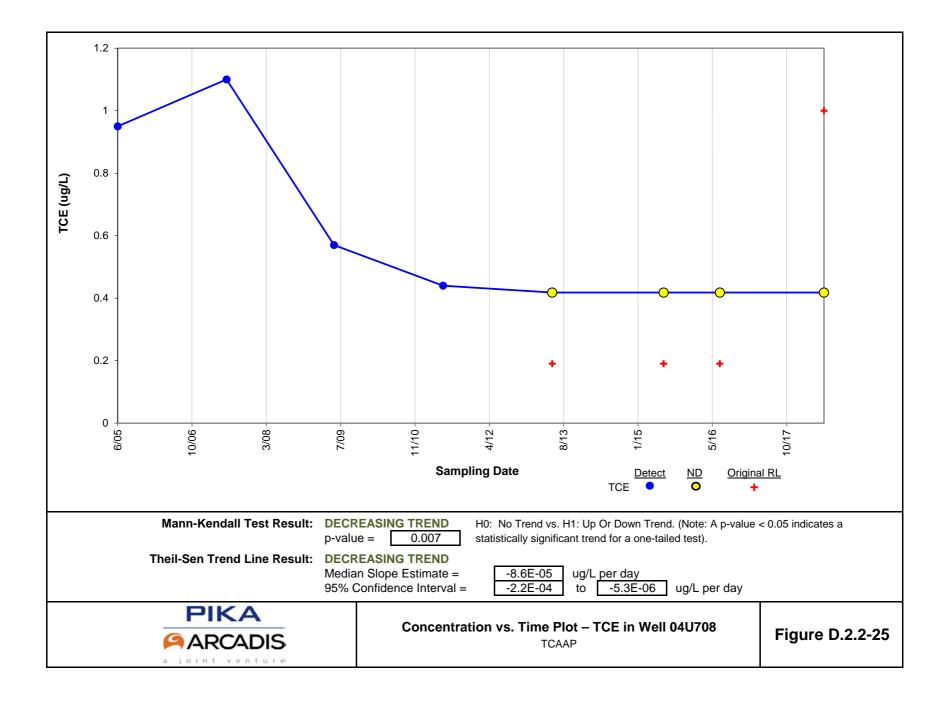


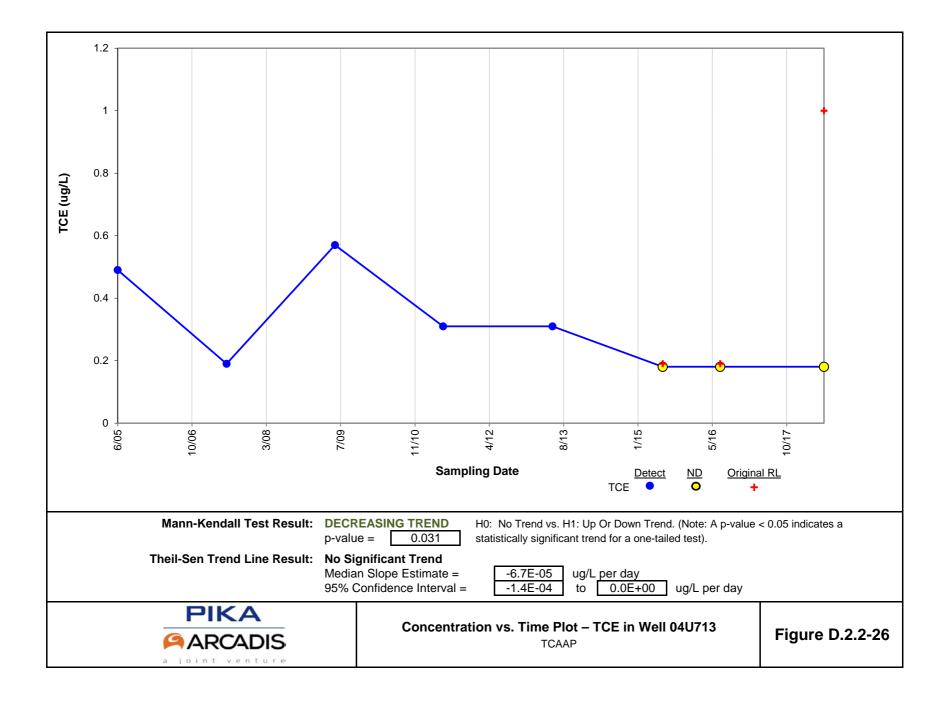


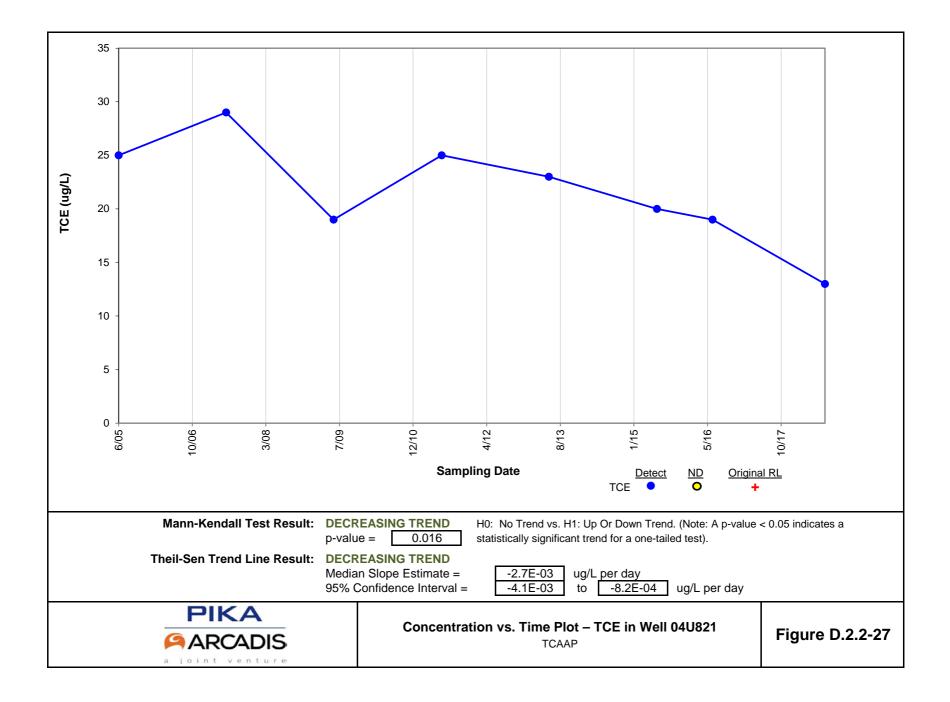


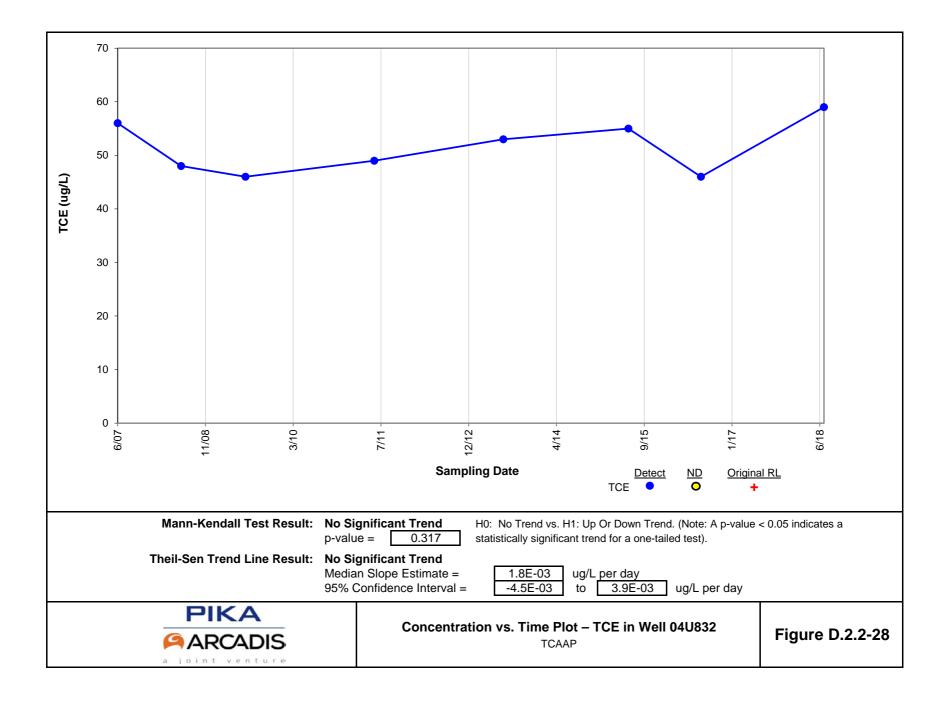


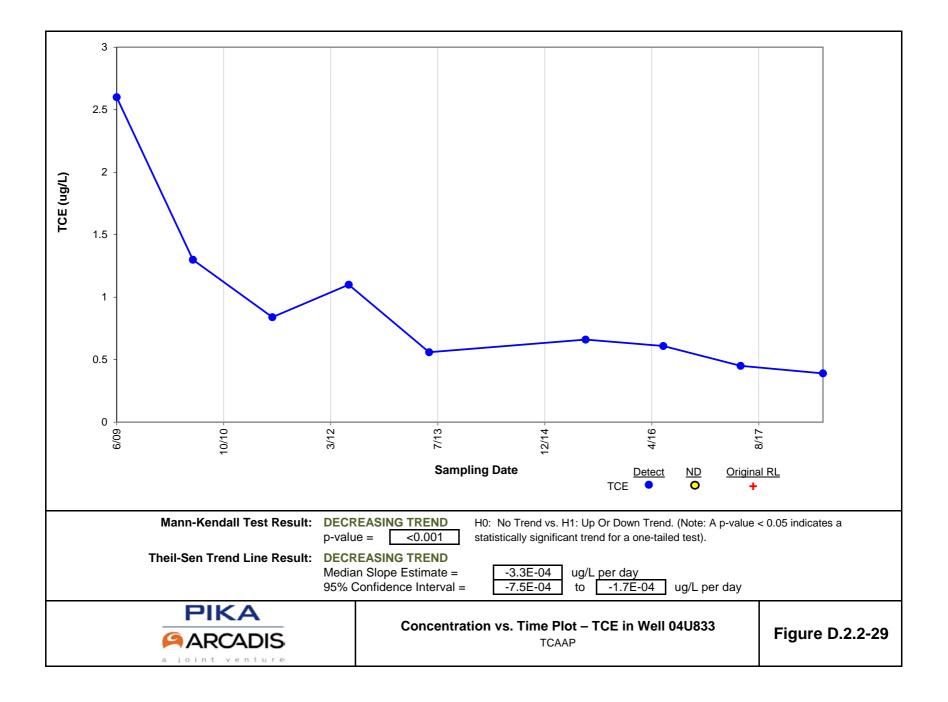


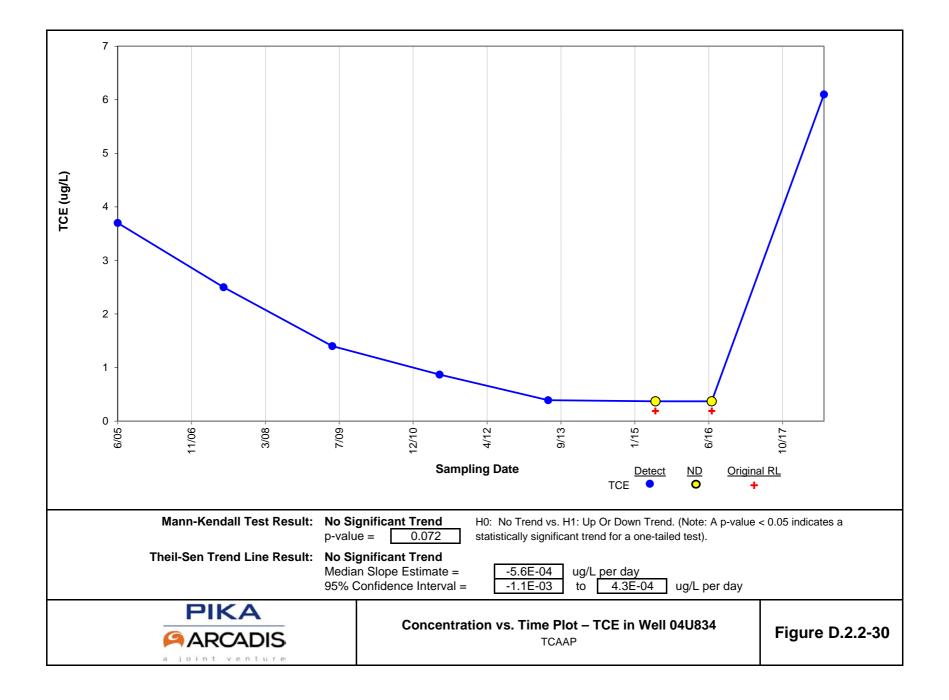


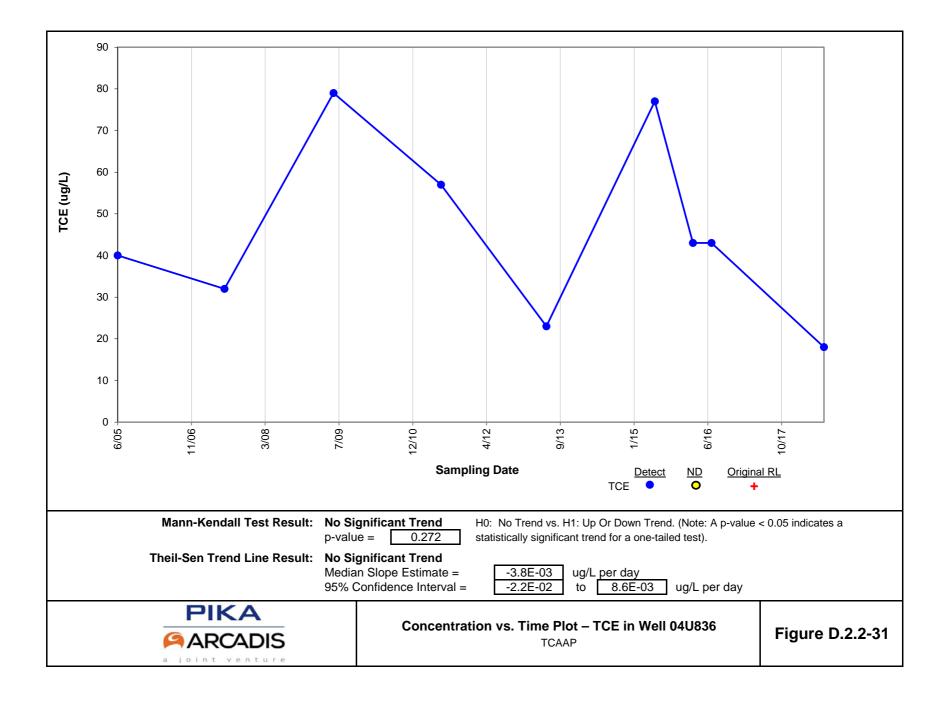


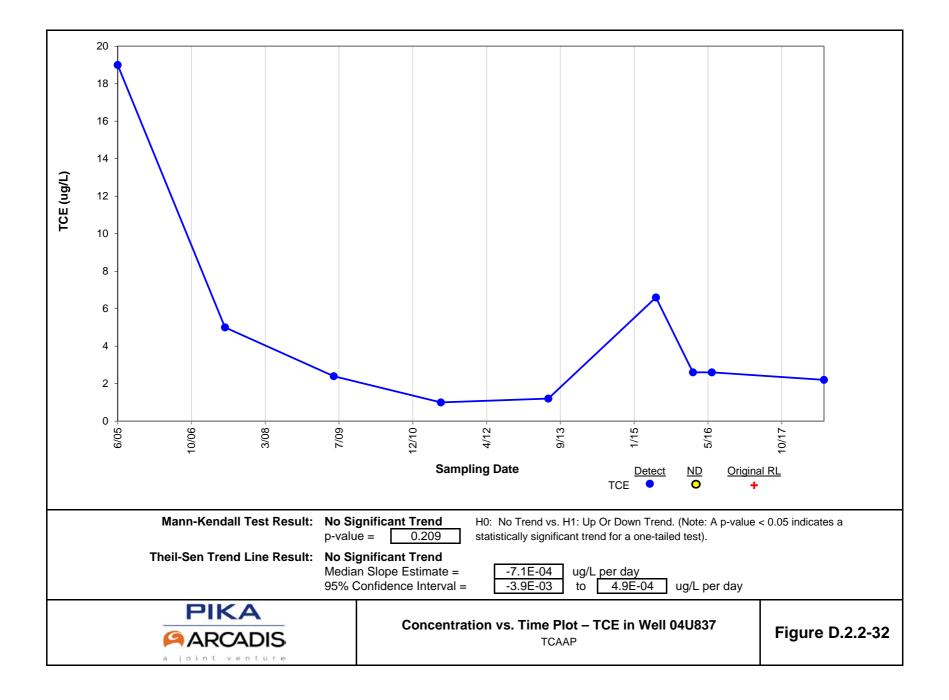


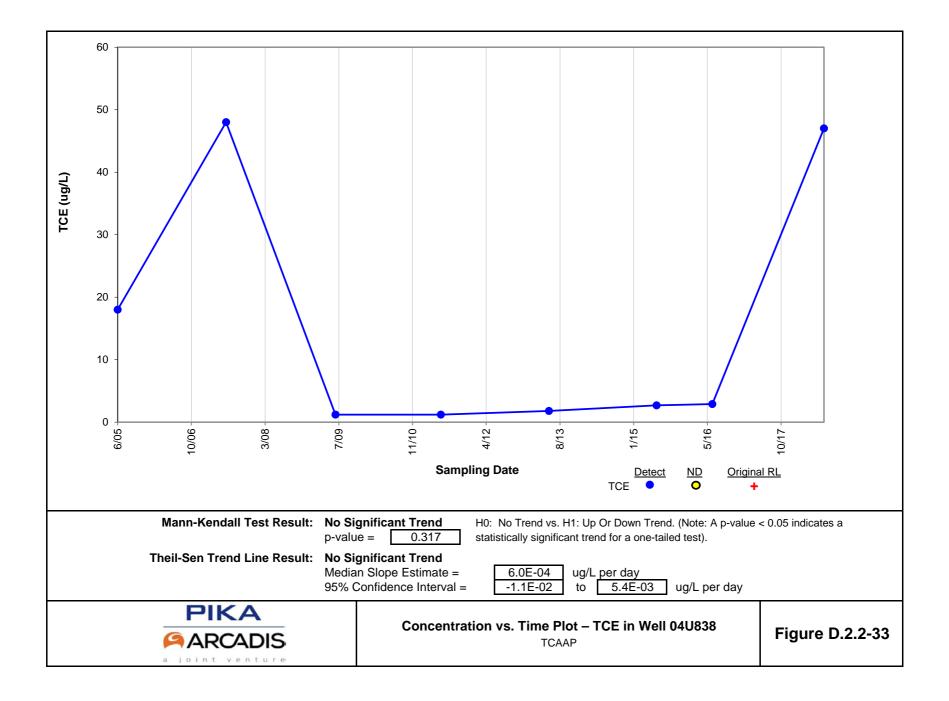


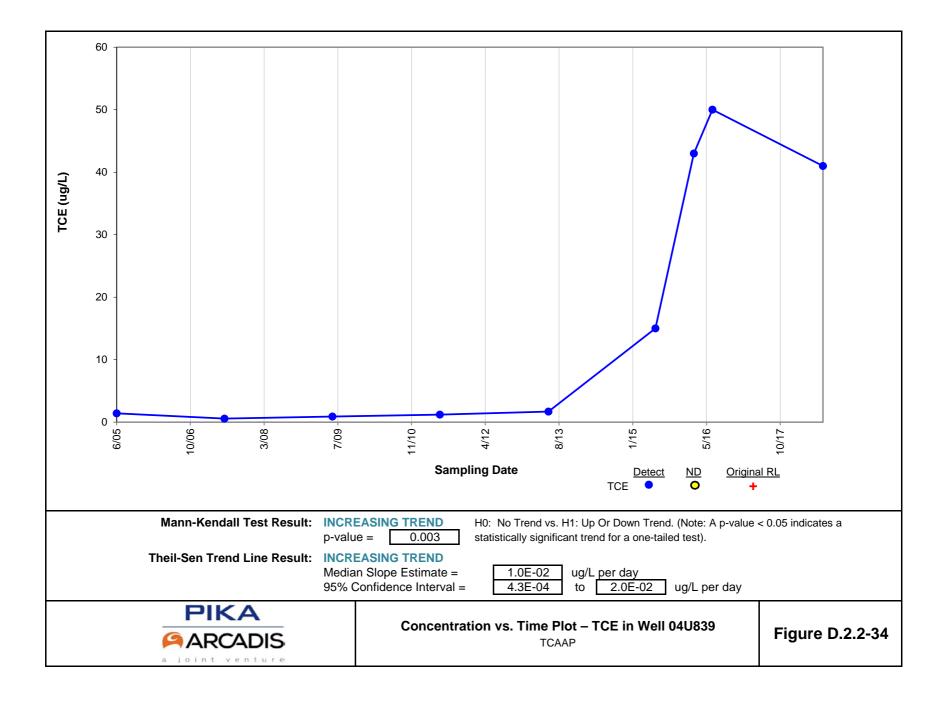


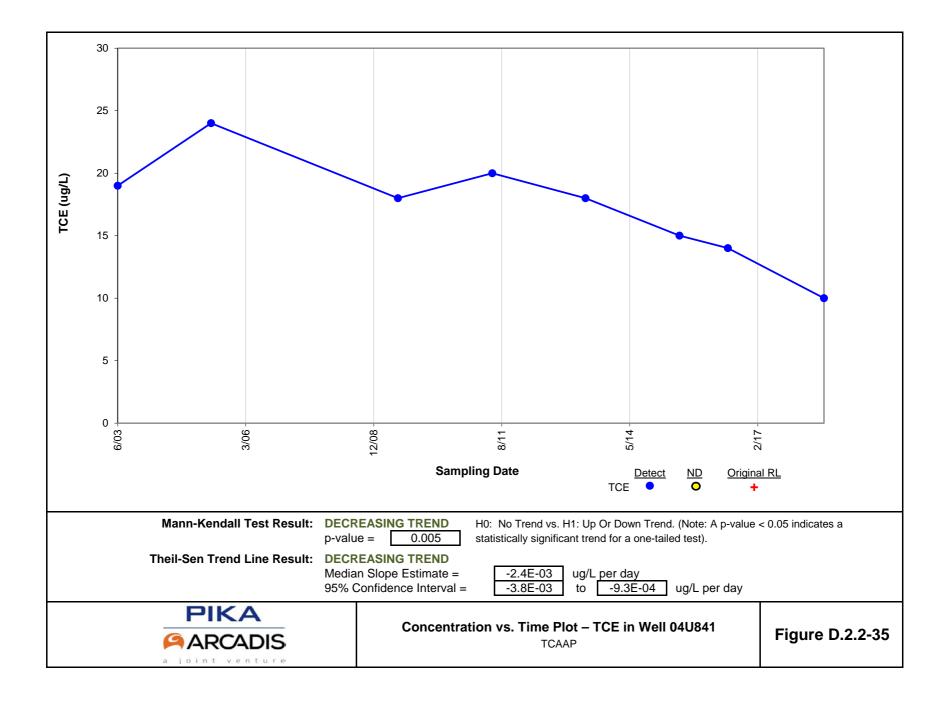


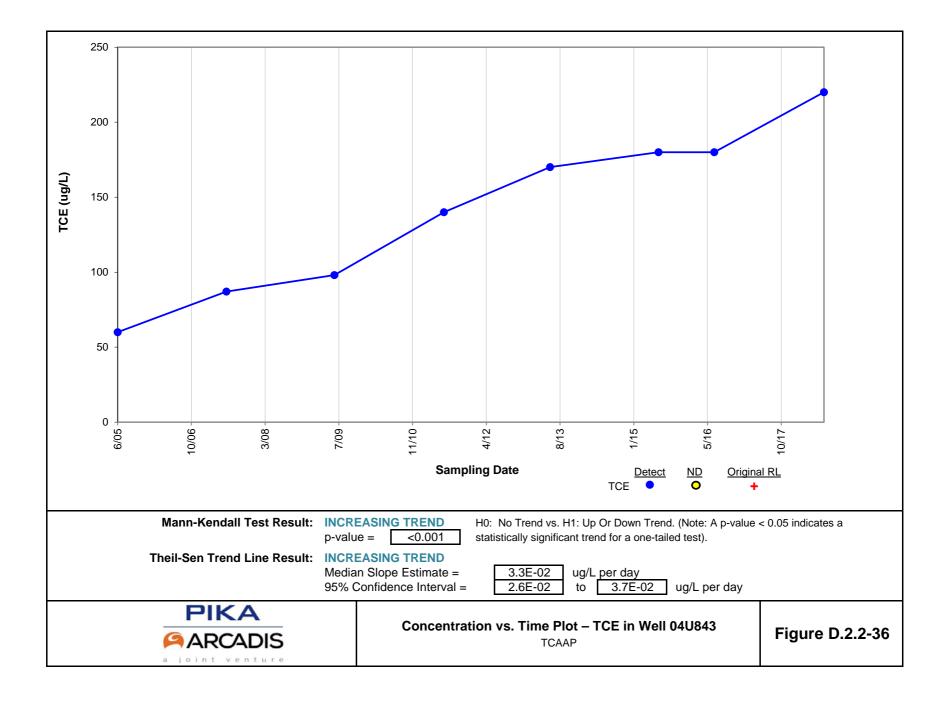


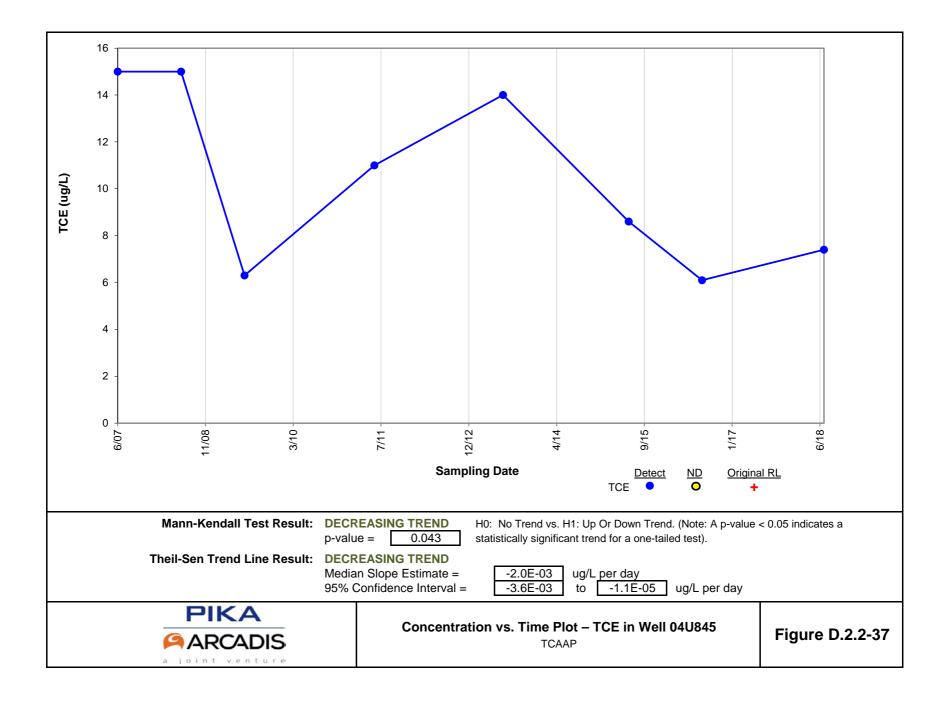


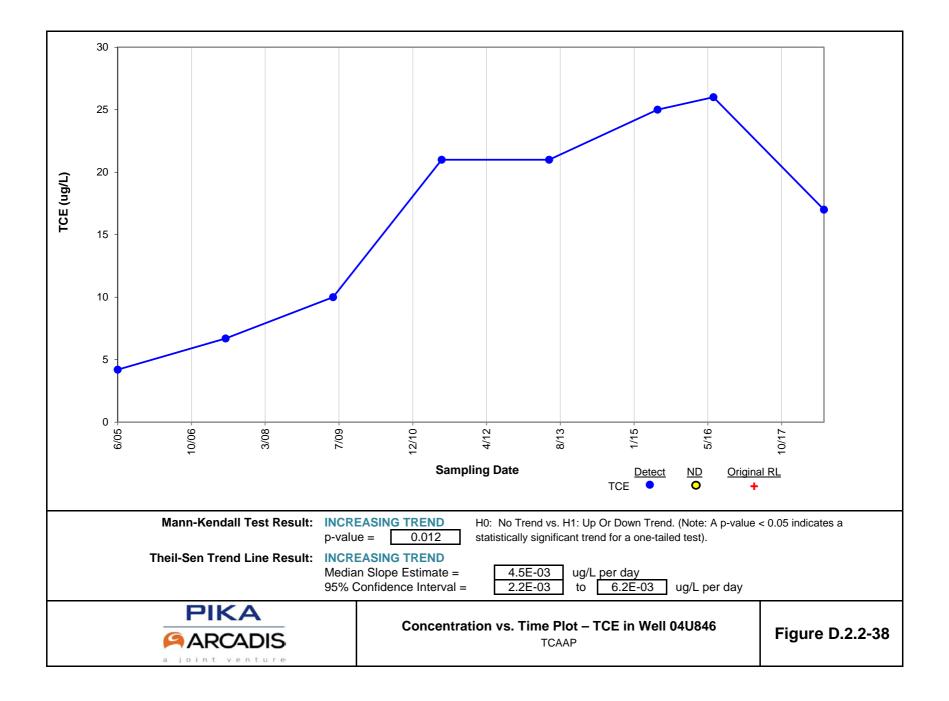


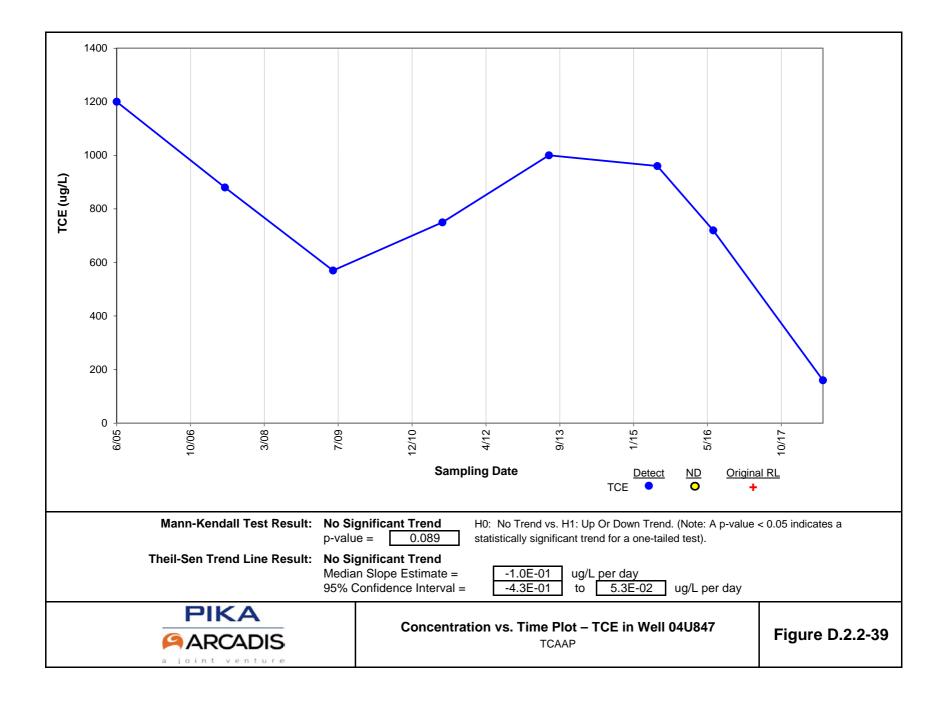


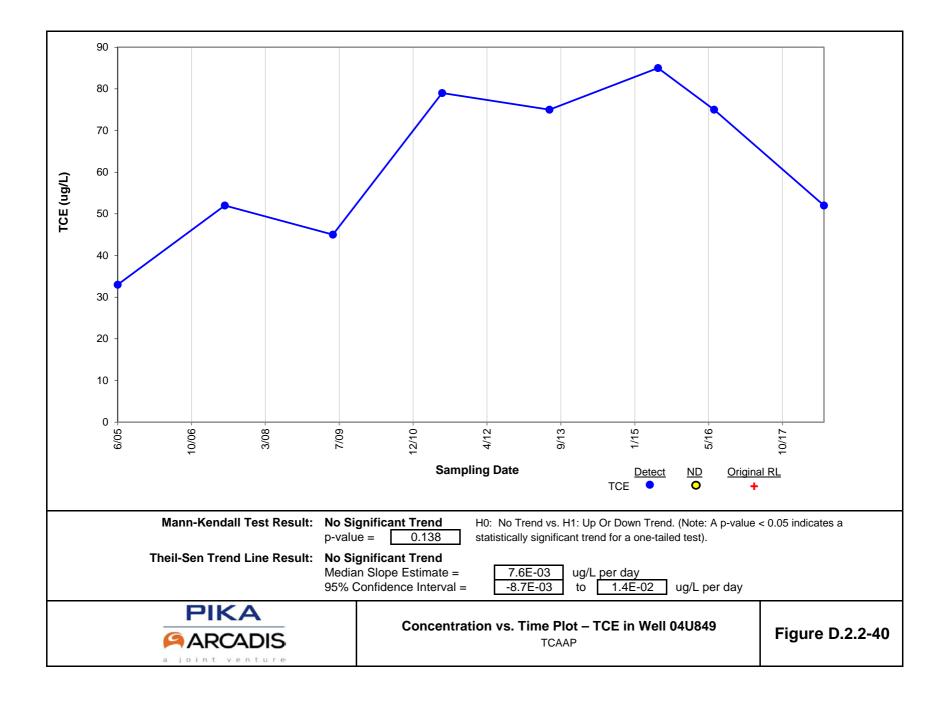


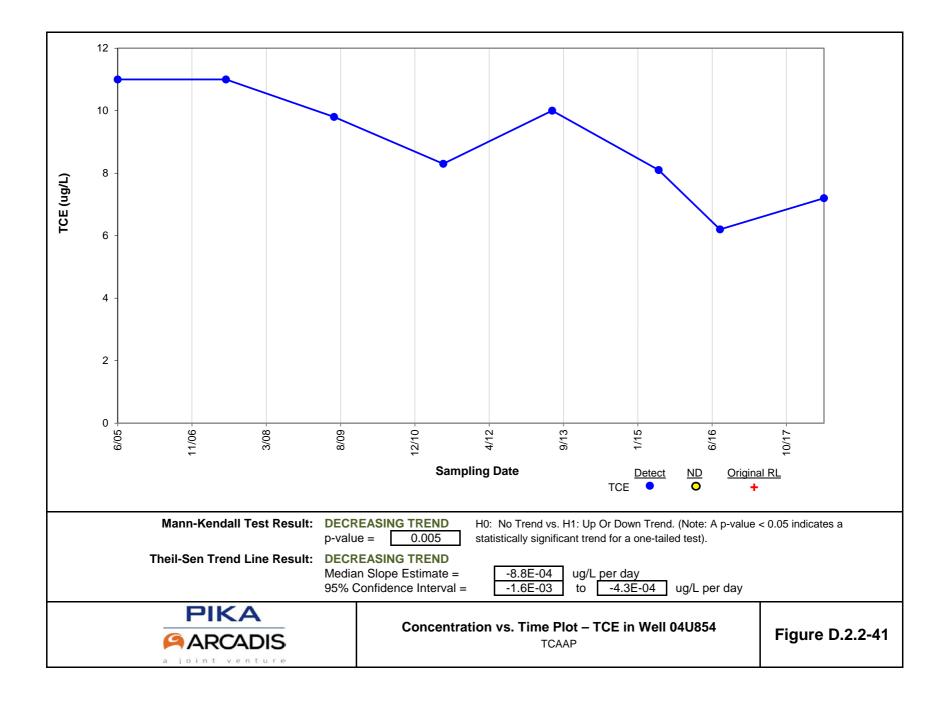


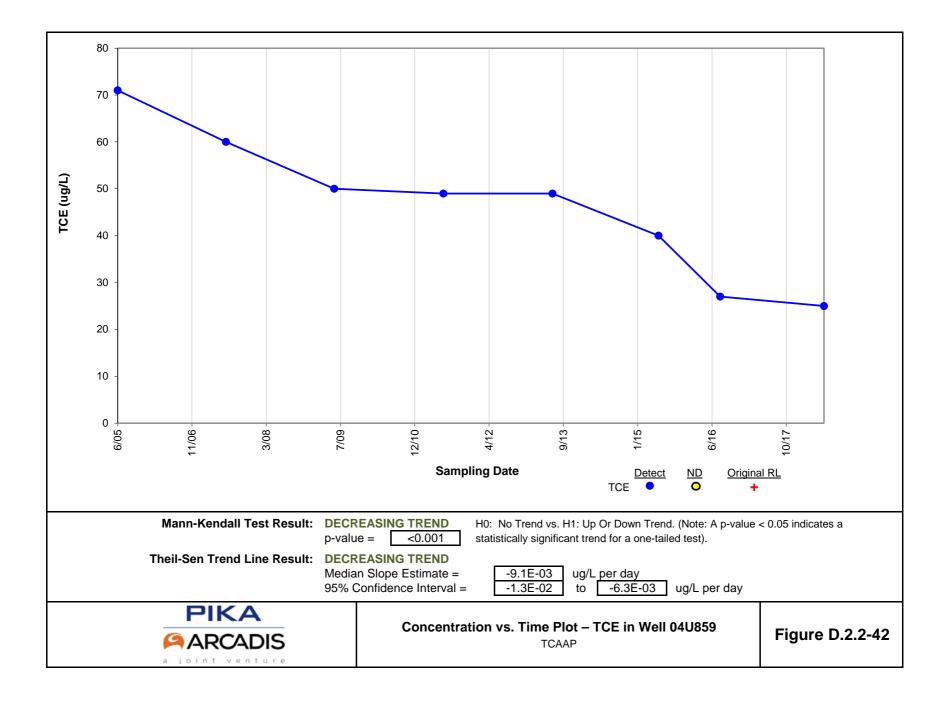


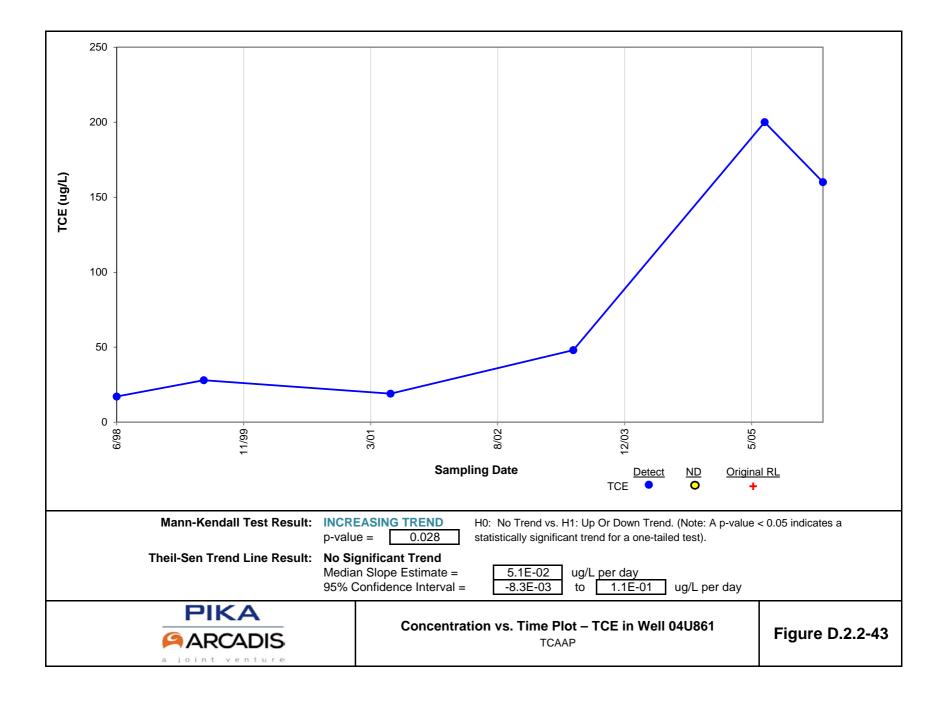


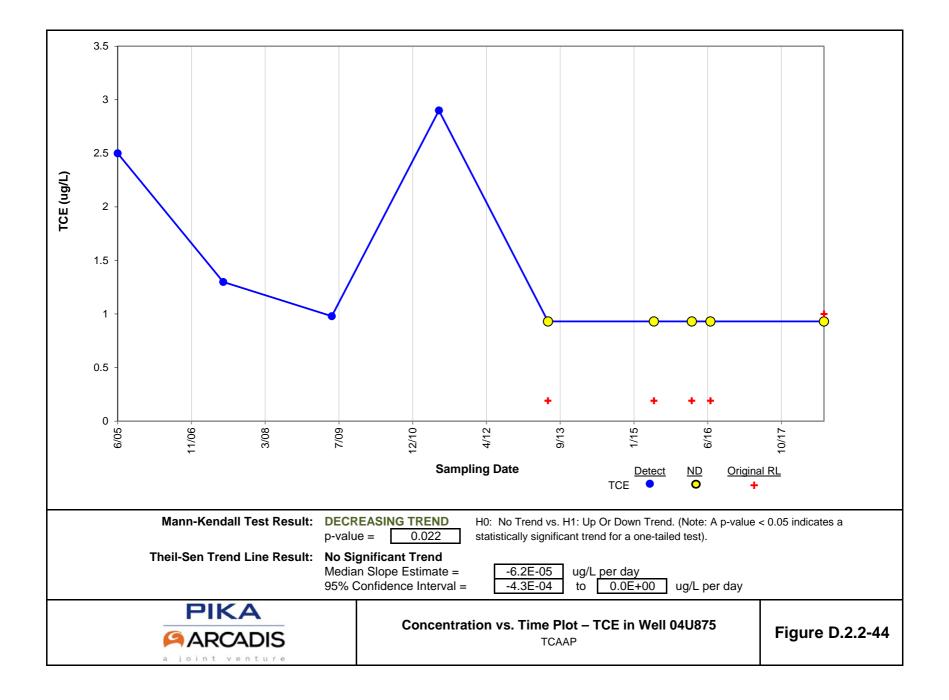


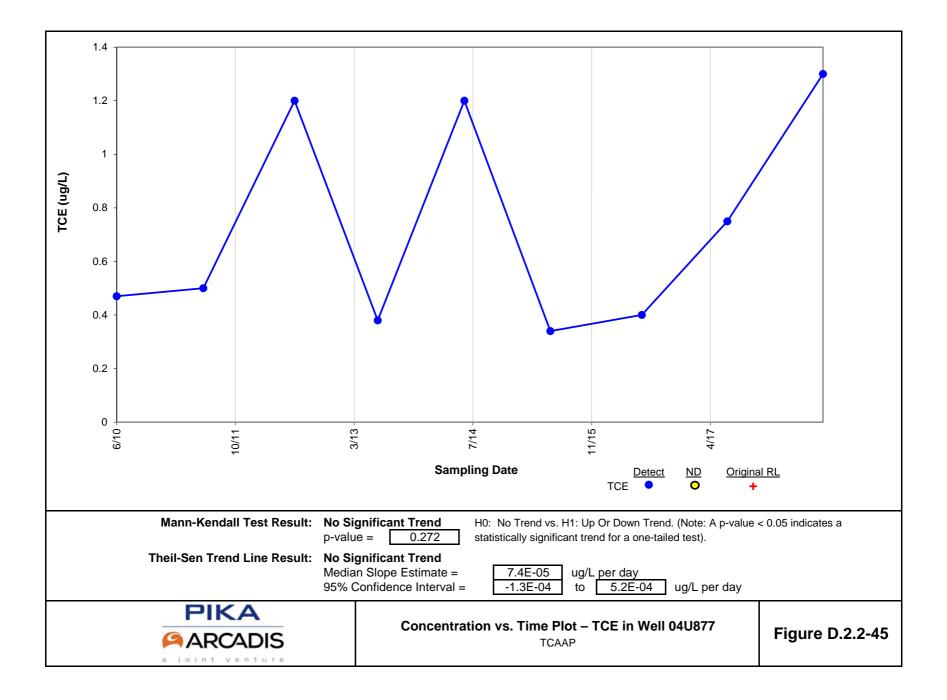


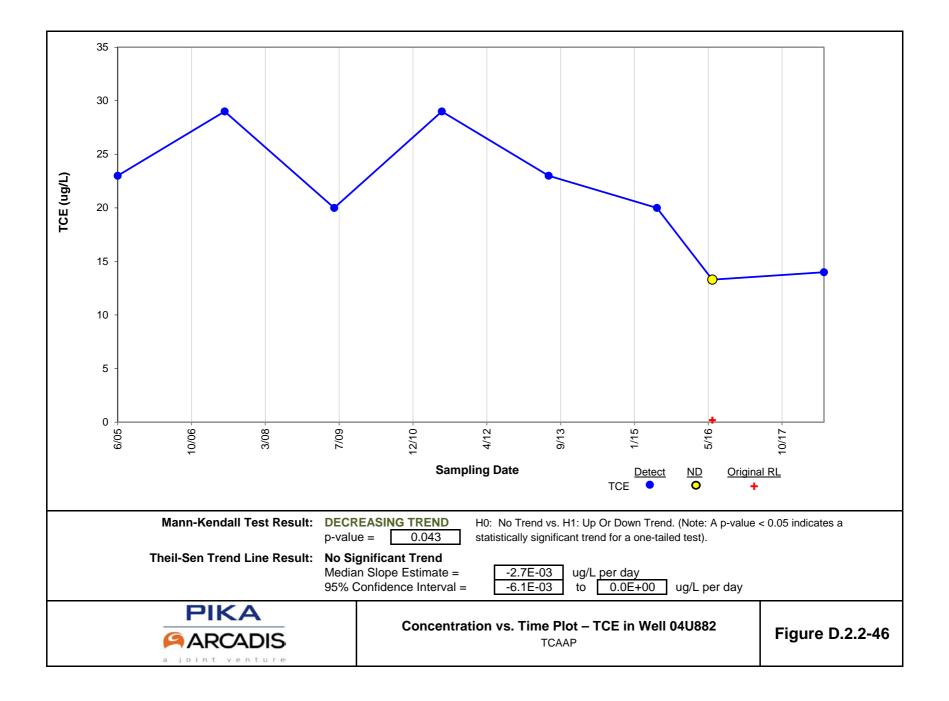


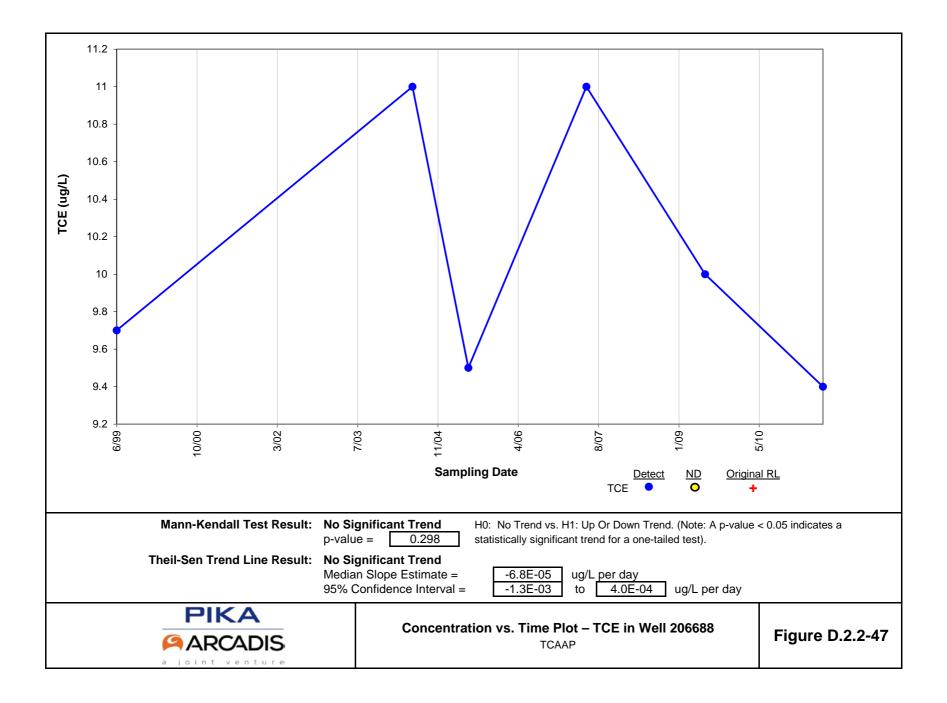


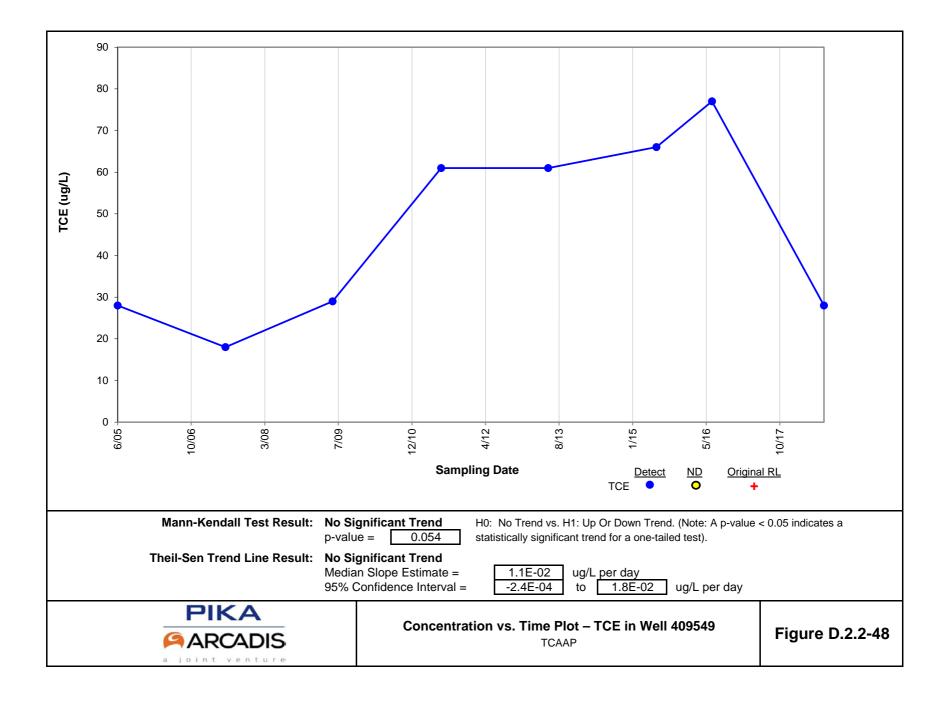


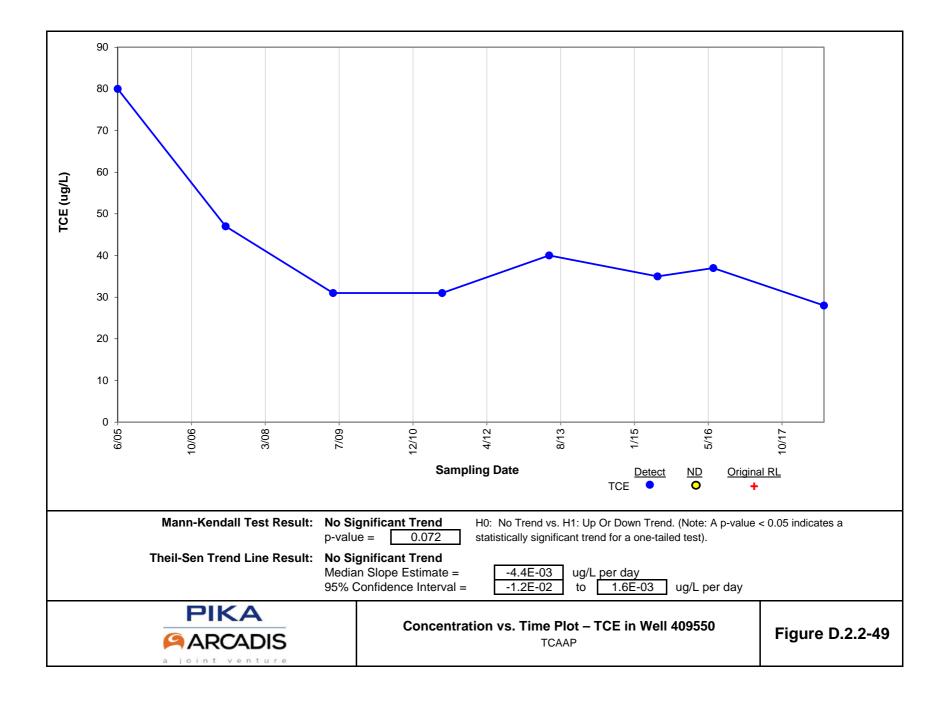


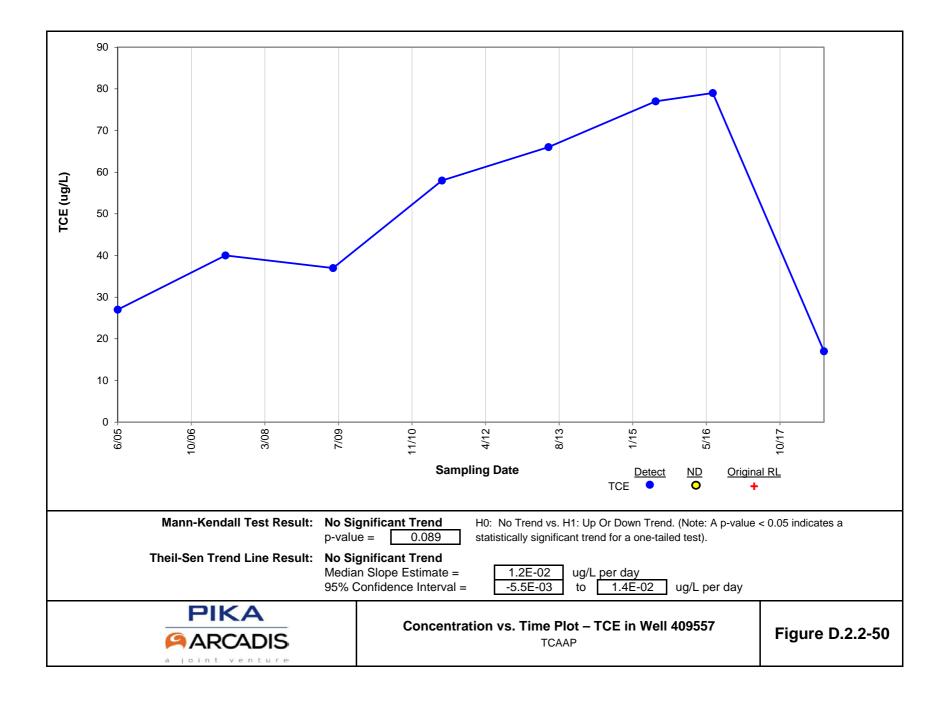


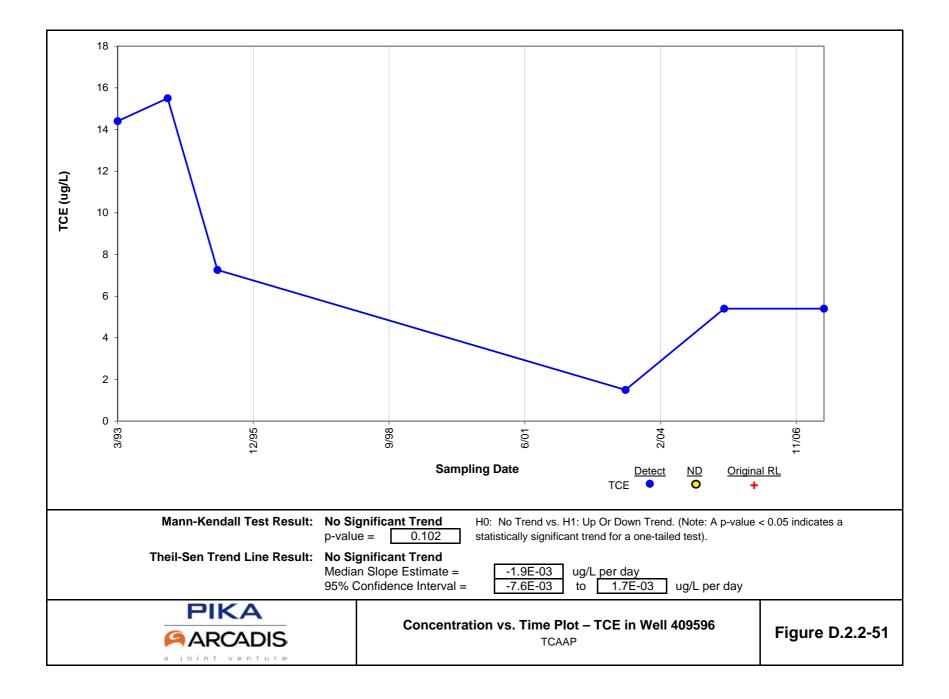


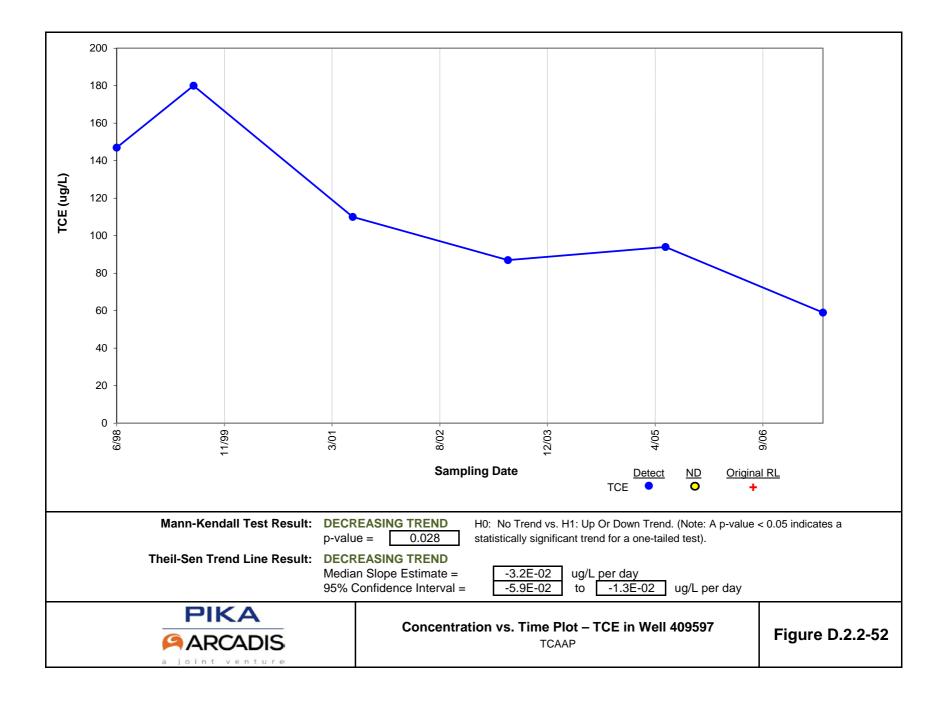


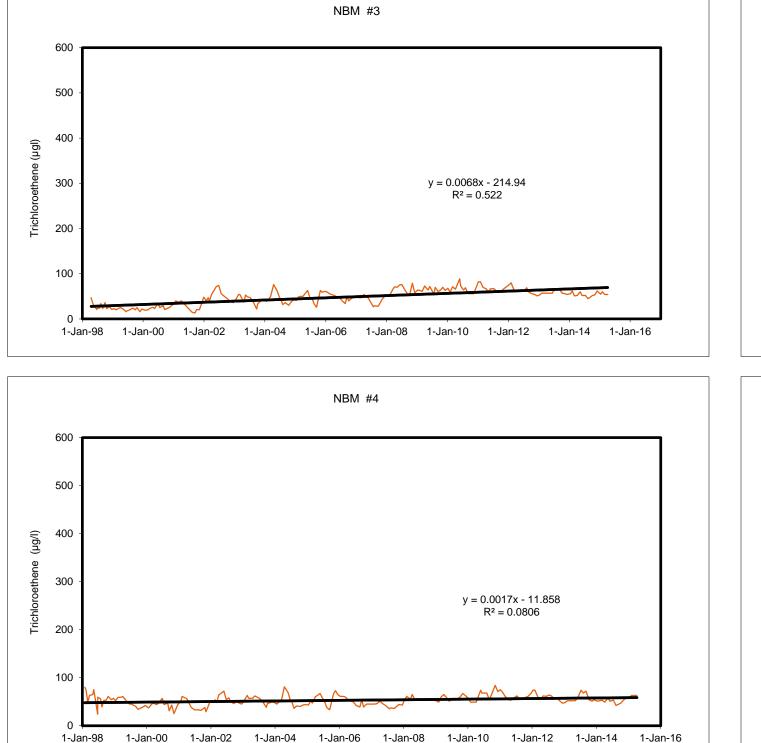


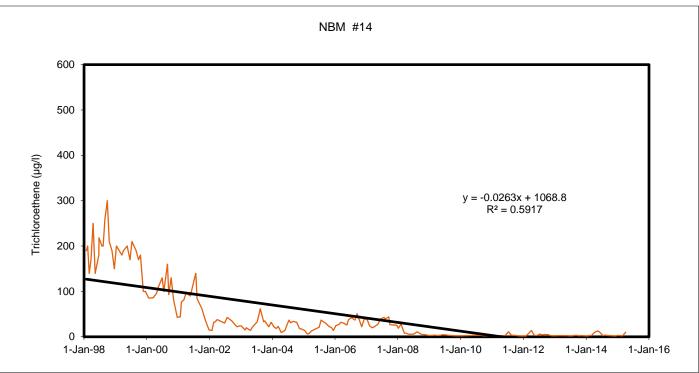












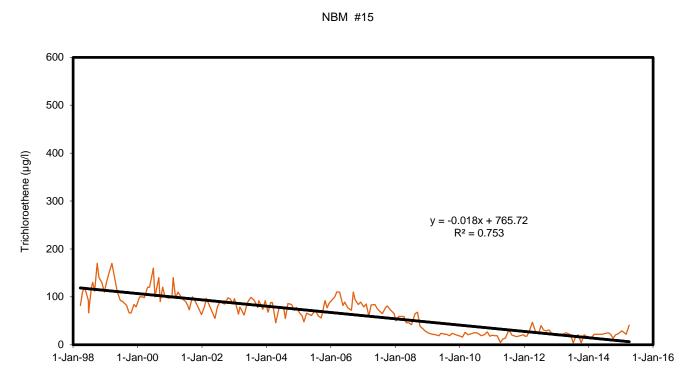


Figure D.2.3-1 New Brighton Municipal Wells: Regression Analysis Since 1998: Trichloroethene

FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, MN

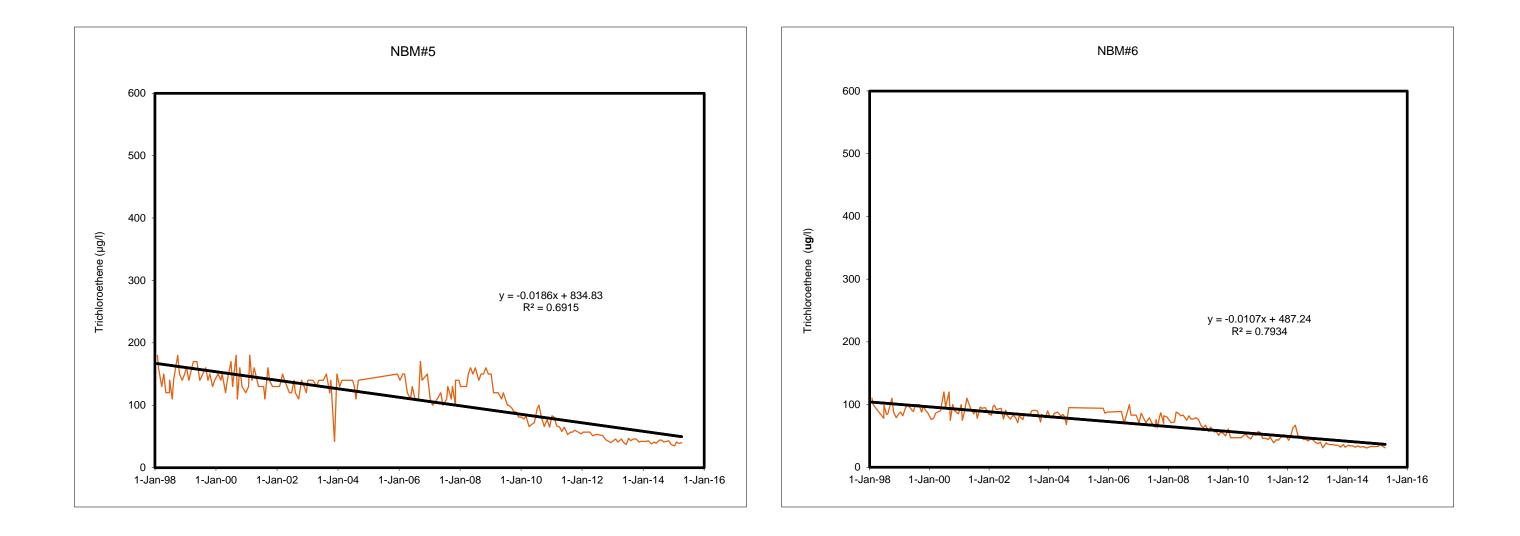
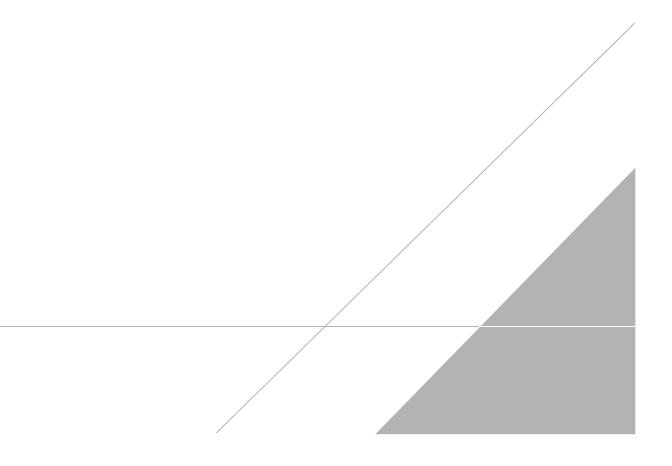


Figure D.2.3-2 New Brighton Municipal Wells: Regression Analysis Since 1998: Trichloroethene


FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, MN

APPENDIX E

Well Inventory Update – FY 2018

Appendix E Well Inventory Update Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

1.0 PURPOSE

The purpose of well inventory is to identify wells that have been impacted or could potentially be impacted by contaminants from the New Brighton/Arden Hills Superfund Site.

2.0 BACKGROUND

Developing and maintaining the well inventory is a process that was initiated in 1991, with the work efforts documented in several update reports since that time. Beginning in FY 1999, the update reporting was incorporated into the Annual Performance Reports.

The well inventory "study area," as defined by the Minnesota Pollution Control Agency, is shown on Figure E-1, and coincides with the Minnesota Department of Health (MDH) Special Well Construction Area.

The aquifers of concern are defined by the 5 μ g/L trichloroethene contour for the Unit 3 and Unit 4 aquifers, and the 1 μ g/L cis-1,2-dichloroethene contour for the Unit 1 aquifer at the north end of OU2.

The "area of concern" for the Unit 3 and Unit 4 aquifers is created by adding a quarter mile buffer area outside the 5 μ g/L trichloroethene contour. The area of concern for the Unit 3 and Unit 4 aquifers is shown on Figure E-2.

The area of concern for the Unit 1 aquifer on the north side of OU2 is delineated by city streets. The area of concern for the Unit 1 aquifer is shown on Figure E-3.

Wells within the study area are categorized based on location, depth/aquifer, and use. Well categories for the well inventory are described in Table E-1.

3.0 PROGRAM REQUIREMENTS

The well inventory program requirements have evolved over time, with changes documented through the update reports. A flowchart that describes the annual requirements for maintaining the well inventory database is shown on Figure E-4. Requirements are summarized below.

Near the beginning of each fiscal year, a database of study area wells is acquired from the MDH. This MDH database query is limited to study area wells that were constructed, sealed, or disclosed in the previous fiscal year. The MDH database consists of three lists:

- Constructed Wells (generated through drillers submitting Well and Boring Records);
- Sealed Wells (generated through drillers submitting Well Sealing Records); and
- Disclosed Wells (made known through property transfer).

With the new MDH information, the well inventory database is updated by recategorizing wells, as necessary, and by adding any new wells that are within the study area. Any new wells found in Categories 1a, 1b, 1c, 2a, 2b, 2c, or 4a are targeted for sampling in that fiscal year; however, an attempt to reclassify any new category 4a wells will be made prior to sampling. Wells that are not sampled due to non-responsive well owners are targeted for sampling in the next major sampling event.

Appendix E Well Inventory Update Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

Category 4 wells are those with an unknown depth or unknown location, or both. Ideally, there should be no wells in Category 4. Each year, an attempt is made to reclassify Category 4 wells into one of the other categories. This is accomplished through phone calls, letters, and/or site visits to obtain additional information. Any wells which are re-classified as Category 1a, 1b, 1c, 2a, 2b, or 2c are targeted for sampling in that fiscal year.

"Major" well inventory sampling events occur every four years and are shown in Appendix A.1. The major sampling events are scheduled to coincide with the biennial sampling events for performance purposes as delineated in the APR. For each major event, all wells in Categories 1a, 1b, 1c, 2a, 2b, 2c, and 4a are targeted for sampling. After every sampling event, each well owner is mailed a copy of their testing results. Wells that are not sampled due to non-responsive well owners are targeted for sampling in the next major sampling event.

For each sampling event, if any well has a detection which exceeds the applicable New Brighton/Arden Hills Superfund Site groundwater cleanup level for that contaminant (or an additivity of 1.0, similar to the MDH Hazard Index calculation), the well is evaluated using the flow chart presented in Figure E-4 to determine the timing of additional sampling. Wells that are used for drinking water are sampled again within one month of data validation. Wells that are not used for drinking water, but have possible contact exposure risks, are sampled the next fiscal year. If a cleanup level exceedance is confirmed (two consecutive events), and the contaminant concentrations in the well are proportional to contaminant concentrations of the New Brighton/Arden Hills Superfund Site OU1 plume, the Army offers to abandon the well and/or provide an alternate water supply.

The annual reporting requirements for the New Brighton/Arden Hills Superfund Site well inventory will include:

- A list of any wells found or reclassified.
- Analytical results and a summary of sampling efforts from that fiscal year.
- Recommendations for participation in the Well Abandonment/Alternate Water Supply Program.
- An updated well inventory database that lists wells by well category.
- An updated database listing water quality of wells.

4.0 FY 2018 UPDATE

The updated MDH database was provided to Arcadis on January 10, 2019. MDH generates the database from specific Township, Range, and Section data. This comprehensive database was screened to extract the lists of wells that were constructed, disclosed, or sealed between October 1, 2016 and September 30, 2018. Further investigative efforts were primarily focused on determining each well's location (inside or outside the study area and/or area of concern), status (active, inactive, or sealed), and water use (supply/non-supply).

Newly constructed active and inactive wells, and wells of unknown status that were determined to be located within the study area, are presented in Table E-2. Thirty-eight wells were identified within the study area, all of them classified as environmental or monitoring wells. All wells were classified into Category 6.

Disclosed wells that were identified as being in use, inactive, sealed, or of unknown status and that were determined to be located within the study area are identified in Table E-3. Disclosed wells that were located within the area of concern and that the MDH identified as having a change in status from active or inactive to sealed were further investigated for confirmation of their sealed status. Any wells that were

Appendix E Well Inventory Update Fiscal Year 2018 FY 2018 Annual Report Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

already in the well inventory database that the MDH identified as having a change in status from active or inactive to sealed are shown in Table E-3 with strikeouts through the previous well category entry. There were 173 wells disclosed during FY18 that are located within the study area. Of the 173 wells disclosed within the study area, 1 well was categorized as 1d which was inoperable/unused, 34 wells were supply wells within the Study area but outside of the area of concern (Category 3), 4 wells were categorized as 4b (unknown location),12 wells were listed as monitoring wells and assigned to Category 6, 14 wells were assigned to Category 7a (documented as sealed/abandoned), 108 wells were categorized as 7b (undocumented as sealed or improperly abandoned).

Sealed wells were found by reviewing the MDH sealed well list. Wells identified as sealed are shown in Table E-4. Wells identified as sealed in the MDH database updates were assigned to Category 7a.

FY 2018 was not a "major" well inventory sampling event, which occur every four years and which target the wells in Categories 1a, 1b, 1c, 2a, 2b, 2c, and 4a. The next major well inventory sampling event will occur in 2020.

Information contained in Tables E-2 through E-4 has been updated in the well inventory database (Filename "Well Inventory Main Database FY 2018", an Excel file included on this CD).

WELL INVENTORY DATABASE

The Well Inventory Database is located on this CD in the following Microsoft Excel file:

Well Inventory Main Database FY 2018.xls

Table E-1Well Inventory Category DescriptionsFY 2018 Annual ReportTwin Cities Army Ammunitions PlantArden Hills, Minnesota

Category	Subcategory	Explanation
		Water supply wells screened in an aquifer of concern, inside the area of concern. Wells are divided into the following subcategories:
	1a	Drinking water well
	1b	Nondrinking but possible contact water
1	1c	Nondrinking, noncontact water
	1d	Well is inoperable or has not been used for several years
	1e	Well for which the owner has refused (or has been unresponsive to) an Army offer for abandonment, or for which the water use has been deemed
		acceptable
		Water supply wells in an area of concern, inside the buffer lines, but outside the area of concern, screened in an aquifer of concern. Wells are divided
		into the following subcategories:
2	2a	Drinking water well
2	2b	Nondrinking but possible contact water
	2c	Nondrinking, noncontact water
	2d	Well is inoperable or has not been used for several years
3		Water supply wells within the Study Area that are either outside the area of concern, or are within the area of concern but are not screened in an aquifer
		of concern.
		Water supply wells with missing information, divided into the following subcategories:
4	4a	Unknown depth or aquifer, but located in the area of concern.
-	4b	Unknown location, but potentially located within the Study Area. Wells with both an unknown depth and an unknown location are included in 4b.
5		Wells that are in the study area, but that have been field checked and not located. No further action is recommended for these wells.
6		Nonsupply wells (primarily monitoring wells).
		Sealed or abandoned wells. Wells are divided into the following subcategories:
7	7a	Documented as sealed/abandoned
	7b	Undocumented as sealed, or improperly abandoned

Unique Number	Category	Last Name or Business Name	Street	City	Use	Depth	Date Drilled	Well in Database?
808877	6	Wall Development Cos.	501 30th Avenue SE	Minneapolis	Environmental Well	36	5/24/2018	Y
808878	6	Wall Development Cos.	501 30th Avenue SE	Minneapolis	Environmental Well	41	1/26/2018	Y
808879	6	Wall Development Cos.	501 30th Avenue SE	Minneapolis	Environmental Well	26	5/23/2018	Y
808880	6	Wall Development Cos.	501 30th Avenue SE	Minneapolis	Environmental Well	46	5/8/2018	Y
817743	6	Fridley HRA	400 71st Avenue NE	Fridley	Monitoring	8	12/1/2016	Y
817744	6	Fridley HRA	400 71st Avenue NE	Fridley	Monitoring	10.5	12/2/2016	Y
817745	6	Fridley HRA	400 71st Avenue NE	Fridley	Monitoring	20.5	12/1/2016	Y
817746	6	Fridley HRA	400 71st Avenue NE	Fridley	Monitoring	8	12/1/2016	Y
817747	6	Fridley HRA	400 71st Avenue NE	Fridley	Monitoring	8	12/2/2016	Y
821414	6	Tomas	2501 Lowry Avenue Ne	St. Anthony	Environmental Well	20	3/27/2017	Y
821415	6	Tomas	2501 Lowry Avenue Ne	St. Anthony	Environmental Well	25	3/27/2017	Y
821416	6	Tomas	2501 Lowry Avenue Ne	St. Anthony	Environmental Well	40	3/27/2017	Y
821417	6	Tomas	2501 Lowry Avenue Ne	St. Anthony	Environmental Well	25	6/26/2017	Y
824850	6	Twin City Metalseal and Powder Coating	825 11th Avenue SE	Minneapolis	Environmental Well	27	5/10/2018	Y
828032	6	US Army Enivronmental Command	4761 Hamline Avenue N	Arden Hills	Environmental Well	231	7/11/2017	Y
828033	6	US Army Enivronmental Command	4761 Hamline Avenue N	Arden Hills	Environmental Well	296	7/14/2017	Y
828034	6	US Army Enivronmental Command	4761 Hamline Avenue N	Arden Hills	Environmental Well	201	7/20/2017	Y
828128	6	Tomas	2501 Lowry Avenue Ne	St. Anthony	Environmental Well	25	6/26/2017	Y
828129	6	Tomas	2401 Lowry Avenue NE	St. Anthony	Environmental Well		9/25/2017	Y
828130	6	Tomas	2401 Lowry Avenue NE	St. Anthony	Environmental Well	28	9/25/2017	Y
828131	6	Tomas	2401 Lowry Avenue NE	St. Anthony	Environmental Well	30	9/25/2017	Y
828132	6	Tomas	2401 Lowry Avenue NE	St. Anthony	Environmental Well	32	9/25/2017	Y
830770	6	Ramsey County	1661 Highway 96 W	Arden Hills	Environmental Well		5/9/2018	Y
830771	6	Ramsey County	1661 Highway 96 W	Arden Hills	Environmental Well		5/24/2018	Y
830772	6	Ramsey County	1661 Highway 96 W	Arden Hills	Environmental Well		5/23/2018	Y
831551	6	Twin City Metalseal and Powder Coating	825 11th Avenue SE	Minneapolis	Environmental Well	27	5/9/2018	Y
831552	6	Twin City Metalseal and Powder Coating	825 11th Avenue SE	Minneapolis	Environmental Well	31	5/10/2018	Y
832386	6	Twin City Die Casting Co.	1070 33rd Avenue SE	Lauderdale	Environmental Well	30	5/24/2018	Y
832387	6	Twin City Die Casting Co.	1070 33rd Avenue SE	Lauderdale	Environmental Well	27	5/9/2018	Y
832388	6	Twin City Die Casting Co.	1070 33rd Avenue SE	Lauderdale	Environmental Well	28	5/10/2018	Y
832389	6	Twin City Die Casting Co.	1070 33rd Avenue SE	Lauderdale	Environmental Well	57	1/25/2018	Y
832390	6	Twin City Die Casting Co.	1070 33rd Avenue SE	Lauderdale	Environmental Well	30	5/25/2018	Y
832516	6	MPCA	2600 Winter Street NE	Minneapolis	Environmental Well	28	5/8/2018	Ý

Un	nique	Category	Last Name or Business	Street	City	Use	Depth	Date	Well in
Nu	mber	Category	Name	Sileei	City	USe	Debu	Drilled	Database?
83	82517	6	MPCA	2600 Winter Street NE	Minneapolis	Environmental Well	34	5/25/2018	Y
83	82518	6	MPCA	2600 Winter Street NE	Minneapolis	Environmental Well	36	5/11/2018	Y
83	82519	6	MPCA	2600 Winter Street NE	Minneapolis	Environmental Well	66	1/25/2018	Y
83	32520	6	MPCA	2600 Winter Street NE	Minneapolis	Environmental Well	35	5/14/2018	Y
83	32521	6	MPCA	2600 Winter Street NE	Minneapolis	Environmental Well	56	5/7/2018	Y

Unique Number	Category	Last Name or Business Name	Street	City	Status	Date Sealed	Depth	Date Drilled
127537	7a	Midwest Asphalt	1385 Nothwest Parkway	New Brighton	Monitoring	12/5/2007	NA	NA
133237	3	Gerald Griebie TRST	1698 Terrace Drive	Shoreview	In Use	NA	115	28334
135390	3	Alay	5550 Schutta Road	Shoreview	In Use	NA	125	28570
188009	7a	Baker	1715 Hillview Road	Shoreview		4/25/1987	NA	NA
191942	7a	Midwest Asphalt	591 Devine Drive	New Brighton	Monitoring	6/28/2007	NA	NA
200068	7a	Hammes Partners II, LP	1831 County Road C W	Roseville	Water Supply	10/1/1991	NA	NA
206779	3	Casper	3963 Glenview Avenue	Arden Hills	In Use	NA	195	22270
233846	3	Yesil	1401 County Road E W	Arden Hills	Not In Use	NA	92	NA
234277	3	No Owner Found	New Brighton	New Brighton	No Status Reported	NA	17	7/25/1980
234296	7a	City of New Brighton	New Brighton	New Brighton	Monitoring	12/11/2007	NA	NA
234297	7a	Alliant Techsystems	450 14th Street NW	New Brighton	Monitoring	8/18/2008	NA	NA
257443	7a	Midwest Asphalt	575 Devine Drive	New Brighton	Monitoring	6/28/2007	NA	NA
277736	3	B Michael Cox Development, LLC	890 Mississippi Street	Fridley	Not In Use	NA	NA	NA
277826	7b	Journye Home MN	3246 New Brighton Road	Arden Hills	Water Supply	NA	NA	NA
277898	7a	Nguyen	2551 Wheeler Avenue N	Roseville	Water Supply	10/28/2016	NA	NA
409596	7a	Midwest Asphalt	575 Devine Drive	New Brighton	Monitoring	6/28/2007	NA	NA
409597	7a	Midwest Asphalt	591 Devine Drive	New Brighton	Monitoring	6/28/2007	NA	NA
409598	7a	City of New Brighton	540 Devine Drive	New Brighton	Monitoring	12/5/2007	NA	NA
426810	3	Honeywell TCAAP	New Brighton	New Brighton	No Status Reported	NA	113	4/29/1986
541657	7a	Hammes Partners II, LP	1835 County Road C W	Roseville	Monitoring	8/20/1997	NA	NA
717791	6	Nusz	2847 Central Avenue NE	Minneapolis	No Status Reported	NA	196	11/15/2005
717792	6	Nusz	2847 Central Avenue NE	Minneapolis	No Status Reported	NA	85	11/11/2005
717793	6	Nusz	2847 Central Avenue NE	Minneapolis	No Status Reported	NA	43	11/9/2005
757552	7a	City of New Brighton	New Brighton	New Brighton	Monitoring	NA	NA	NA
764188	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	28	8/14/2008
764189	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	27	8/15/2008
764190	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	28	8/14/2008
764191	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	27	8/15/2008
764192	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	27	8/15/2008
764193	7b	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	Monitoring	NA	NA	NA
787876	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	30	10/11/2011
787877	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	30	10/11/2011
787878	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	30	10/11/2011
787879	6	2407 University Investment, LLC	2407 University Avenue SE	Minneapolis	In Use	NA	30	10/11/2011
797083	6 7b	807 Broadway Revival, LLC	807 Broadway Street NE	Minneapolis	Monitoring	10/21/2014	24	NA
797084	67b	807 Broadway Revival, LLC	1112 Quincy Street NE	Minneapolis	Monitoring	10/21/2014	25	NA
H000019287	7b	Erickson	2505 County Road H	Mounds view	Sealed	NA	NA	NA
H000034644	7b	Hammes Partners II, LP	1835 County Road C W	Roseville	Sealed	NA	NA	NA
H000035785	7b	Wolters	1927 Glenpaul Avenue	Arden Hills	Sealed	NA	NA	NA
H000073723	7b	Leary	338 New Brighton Road	New Brighton	Sealed	NA	NA	NA
H000073961	7b	Garner	1666 Ridgewood Lane N	Roseville	Sealed	NA	NA	NA
H000091222	7b	Ellsworth	2972 16th Street NW	New Brighton	Sealed	NA	NA	NA

Unique Number	Category	Last Name or Business Name	Street	City	Status	Date Sealed	Depth	Date Drilled
H000111185	7b	Nusz	2847 Central Avenue NE	Minneapolis	Sealed	NA	NA	NA
H000133395	7b	Tracy Homes, LLC	1923 Summer Street	Falcon Heights	Sealed	NA	NA	NA
H000164293	7b	Tieney	1955 Edgewater Avenue	Arden Hills	Sealed	NA	NA	NA
H000168109	7b	Neff	1760 Shorewood Curve	Roseville	Sealed	NA	NA	NA
H000182476	7b	Abouhadir	840 Mississippi Street NE	Fridley	Sealed	NA	NA	NA
H000206497	7b	Zinnecker	4420 Hamline Avenue N	Arden Hills	Sealed	NA	NA	NA
H000213718	7b	Cramond	5323 Clifton Drive	Mounds View	Sealed	NA	NA	NA
H000245554	7b	Haskin	1655 Oak Avenue	Arden Hills	Sealed	NA	NA	NA
H000266223	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000266224	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000266225	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000266226	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000266227	7b	No Owner Found	540 Devine Drive	New Brighton	Sealed	NA	NA	NA
H000266229	7b	No Owner Found	510 14th Street NW	New Brighton	Sealed	NA	NA	NA
H000266230	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000268012	7b	Nguyen	2530 Silver Lake Road NW	New Brighton	Sealed	NA	NA	NA
H000268766	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000268794	7b	No Owner Found	New Brighton	New Brighton	Sealed	NA	NA	NA
H000273505	7b	No Owner Found	1385 Nothwest Parkway	New Brighton	Sealed	NA	NA	NA
H000273549	7b	No Owner Found	510 14th Street NW	New Brighton	Sealed	NA	NA	NA
H000285660	7b	Gutierrez	1915 Glenpaul Avenue	Arden Hills	Sealed	NA	NA	NA
H000312294	7b	Moore	1974 Summer Street	Falcon Heights	Sealed	NA	NA	NA
H000315144	7b	Hunt	7531 Tempo Terrace NE	Fridley	Sealed	NA	NA	NA
H000318902	7b	Szatrowski	1875 Ryan Avenue W	Roseville	Sealed	NA	NA	NA
H000318917	7b	Pierce	2599 Wheller Street N	Roseville	Sealed	NA	NA	NA
H000319676	7b	Robles	4528 Fourth Street NE	Columbia Heights	Sealed	NA	NA	NA
H000319802	7b	Kulzer	4408 Hamline Avenue	Arden Hills	Sealed	NA	NA	NA
H000322966	7b	Sparr	1975 Autumn Street	Falcon Heights	Sealed	NA	NA	NA
H000323113	7b	Maple Ridge Construction, Inc	2544 Beacon Street	Roseville	Sealed	NA	NA	NA
H000325459	7b	Martin	4908 Jefferson Street NE	Columbia Heights	Sealed	NA	NA	NA
H000333899	7b	Kelley	4439 21/2 Street NE	Columbia Heights	Sealed	NA	NA	NA
H000337183	7b	Journey Home MN	3246 New Brighton Road	Arden Hills	Sealed	NA	NA	NA
H000337195	7b	Buus	1592Lois Drive	Shoreview	Sealed	NA	NA	NA
H000339448	7b	Hornstra	2816 Highway 88	St. Anthony	Sealed	NA	NA	NA
H000340447	7b	Carvalhodealmeida	20 Mid Oaks Lane	Roseville	Sealed	NA	NA	NA
H000340953	7b	Faust	760 Eighth Avenue NW	New Brighton	Sealed	NA	NA	NA
H000342443	7b	Stevens	1624 Osborne Road NE	Fridley	Sealed	NA	NA	NA
H000344717	7b	Liu	6361 Able Street NE	Fridley	Sealed	NA	NA	NA
H000345131	7b	Abouhadir	840 Mississippi Street NE	Fridley	Sealed	NA	NA	NA
H000346763	7b	Neuburger	2143 Midlothian Road	Roseville	Sealed	NA	NA	NA
H000349499	7b	Smith	1831 Tatum Street	Falcon Heights	Sealed	NA	NA	NA
H000351838	7b	Stevens	3090 Wilder Street N	Roseville	Sealed	NA	NA	NA

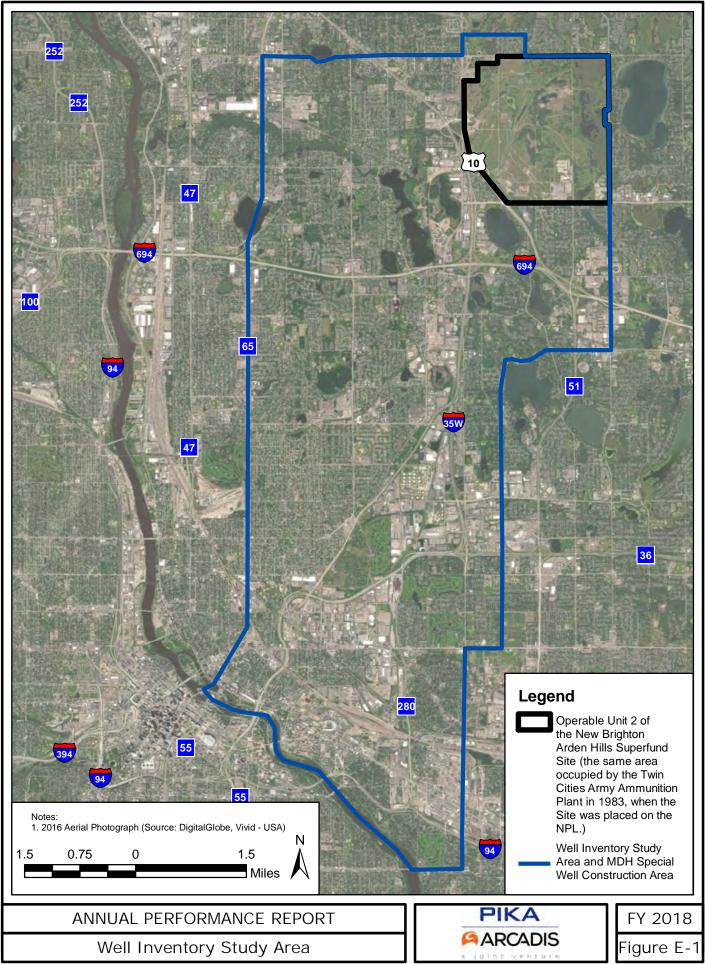
Unique Number	Category	Last Name or Business Name	Street	City	Status	Date Sealed	Depth	Date Drilled
H000351838	7b	No Owner Found	3090 Wilder Street N	Roseville	Sealed	NA	NA	NA
UNK0437667	3	Imholte	5290 Pinewood Court	Mounds view	Not In Use	NA	NA	NA
UNK0538006	7b	Al Maliki	7301 Van Buren Street NE	Fridley	Sealed	NA	NA	NA
UNK0538250	7b	Phan	1730 Hillview Road	Shoreview	Sealed	NA	NA	NA
UNK0538258	7b	Lindberg	6524 Anoka Street NE	Fridley	Sealed	NA	NA	NA
UNK0538349	3	Wegner	1735 Lois Drive	Shoreview	In Use	NA	NA	NA
UNK0538593	7b	Sanchezquevedo	7365 Spring Lake Road	Mounds View	Sealed	NA	NA	NA
UNK0538594	7b	Sanchezquevedo	7365 Spring Lake Road	Mounds View	Sealed	NA	NA	NA
UNK0538595	7b	Sanchezquevedo	7365 Spring Lake Road	Mounds View	Sealed	NA	NA	NA
UNK0539205	3	Barnsley	5541 Fairview Avenue N	Shoreview	In Use	NA	NA	NA
UNK0539665	3	Hubers	2936 Old Highway 8	Roseville	In Use	NA	NA	NA
UNK0540012	3	Energy Park Holdings, LLC	2091 Energy Park Drive	St. Paul	In Use	NA	NA	NA
UNK0540711	7b	Kavaloski	2917 Troseth Road	Roseville	Sealed	NA	NA	NA
UNK0540753	7b	Miner	2243 Thorndale Avenue	New Brighton	Sealed	NA	NA	NA
UNK0540756	7b	Macrina	1665 Rose Place	Roseville	Sealed	NA	NA	NA
UNK0540948	3	Watson	2210 Bronson Drive	Mounds View	Not In Use	NA	NA	NA
UNK0541007	7b	Perez	7460 Able Street NE	Fridley	Sealed	NA	NA	NA
UNK0541070	7b	Forsythe	2705 27th Avenue NE	St. Anthony	Sealed	NA	NA	NA
UNK0541265	3	Roeser	2030 Fairview Avenue N	Roseville	In Use	NA	165	1973
UNK0541294	7b	Forte	2591 Charlotte Street	Roseville	Sealed	NA	NA	NA
UNK0541687	3	Schneider	2237 N Cleveland Avenue	Roseville	Not In Use	NA	NA	NA
UNK0542032	7b	Aker	4765 Main Street NE	Fridley	Sealed	NA	NA	NA
UNK0542132	7b	Samplson	1711 St. Marys Street	Falcon Heights	Sealed	NA	NA	NA
UNK0542587	7b	Kelley	4439 2 1/2 Avenue NE	Columbia Heights	Sealed	NA	NA	NA
UNK0542625	3	Little Red Hen Properties, Inc.	1683 Lois Drive	Shoreview	In Use	NA	NA	NA
UNK0542641	7b	Maloney	1922 Autumn Street	Falcon Heights	Sealed	NA	NA	NA
UNK0543296	7b	McDonough	7425 Pleasant View Drive	Mounds View	Sealed	NA	NA	NA
UNK0543331	3	Odegard	2605 Wheeler Street N	Roseville	Not In Use	NA	NA	NA
UNK0544567	3	Smith	118 New Brighton Road	New Brighton	Not In Use	NA	NA	NA
UNK0544921	3	Olson	3011 Shorewood Lane	Roseville	Not In Use	NA	NA	NA
UNK0544996	3	Persuitti	3150 Shorewood Drive	Arden Hills	Not In Use	NA	NA	NA
UNK0545452	3	Marken	1370 Rice Creek Road Ne	Fridley	Not In Use	NA	NA	NA
UNK0546162	7b	Woolsey	1791 Longview Drive	New Brighton	Sealed	NA	NA	NA
UNK0546639	3	Kruta	1870 Beckman Avenue	Arden Hills	In Use	NA	NA	NA
UNK0546639	3	VanKampen	1870 Beckman Avenue	Arden Hills	In Use	NA	NA	NA
UNK0547700	7b	Christensen	6161 Sunrise Drive NE	Fridley	Sealed	NA	NA	NA
UNK0547746	7b	Oase	1683 Lois Drive	Shoreview	Sealed	NA	NA	NA
UNK0547924	76 7b	Darrel D.	2516 27th Avenue NE	St. Anthony	Sealed	NA	NA	NA
UNK0548540	76 7b	Viken	1985 Glenpaul Avenue	Arden Hills	Sealed	NA	NA	NA
UNK0548830	75 7b	Swenson	4030 Valentine Court	Arden Hills	Sealed	NA	NA	NA
UNK0548840	3	Taylor	1803 Venus Avenue	Arden Hills	Not In Use	NA	NA	NA
UNK0549486	7b	Stier	2009 Beacon Street	Roseville	Sealed	NA	NA	NA

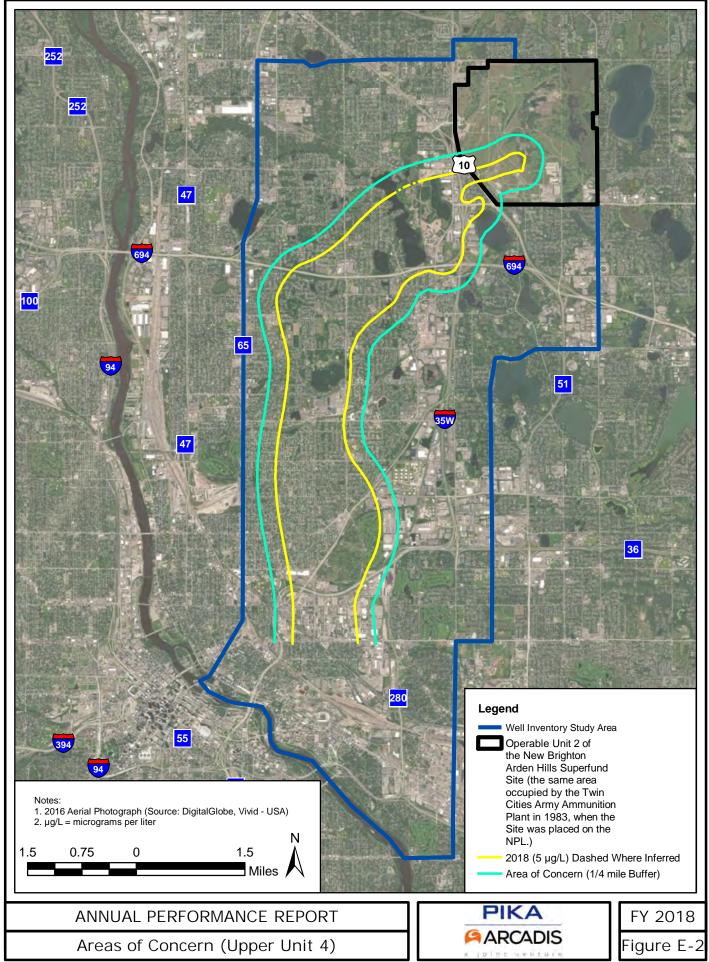
Unique Number	Category	Last Name or Business Name	Street	City	Status	Date Sealed	Depth	Date Drilled
UNK0549524	3	Kottke	1661 Lake Valentine Road	Arden Hills	In Use	NA	NA	NA
UNK0549551	7b	Lavine	4370 Snelling Avenue N	Arden Hills	Sealed	NA	NA	NA
UNK0549946	7b	Buzzel	1385 Skywood Lane NE	Fridley	Sealed	NA	NA	NA
UNK0550118	7b	Stiff	1742 Tatum Street	Falcon Heights	Sealed	NA	NA	NA
UNK0550212	3	Howe	1770 Hillview Road	Shoreview	In Use	NA	NA	NA
UNK0550328	7b	Reiter	1636 Lois Drive	Shoreview	Sealed	NA	NA	NA
UNK0550329	7b	Reiter	1636 Lois Drive	Shoreview	Sealed	NA	NA	NA
UNK0550651	3	Howell	2276 Highway 36 W	Roseville	In Use	NA	NA	NA
UNK0550974	7b	Durhman	3628 Snelling Avenue N	Arden Hills	Sealed	NA	NA	NA
UNK0551951	3	Cornerstone Private Asset Trust Co., LLC	6663 Lucia Lane	Fridley	In Use	NA	NA	NA
UNK0551958	3	Gast	3083 Shorewood Lane	Roseville	In Use	NA	NA	NA
UNK0551963	3	Cornerstone Private Asset Trust Co., LLC	6663 Lucia Lane	Fridley	In Use	NA	NA	NA
UNK0552090	7b	Gibbs	2167 Rosewood Lane N	Roseville	Sealed	NA	NA	NA
UNK0552174	7b	Mesa Investments, LLC	2005 Longview Drive	New Brighton	Sealed	NA	NA	NA
UNK0552175	7b	Mesa Investments, LLC	2005 Longview Drive	New Brighton	Sealed	NA	NA	NA
UNK0552193	7b	Lundquist	1657 Millwood Avenue	Roseville	Sealed	NA	NA	NA
UNK0552479	7a	Lohmann	1646 Gardena Avenue NE	Fridley	Sealed	11/16/2007	157	NA
UNK0552638	3	Buie	5580 Aldine Street	Shoreview	Not In Use	NA	NA	NA
UNK0552922	3	Buie	5580 Aldine Street	Shoreview	Not In Use	NA	NA	NA
UNK0553071	1d	Belden River Properties, LLC	2504 27th Avenue NE	St. Anthony	Not In Use	NA	NA	NA
UNK0553097	7b	Mejia	1770 Oakcrest Avenue	Roseville	Sealed	NA	NA	NA
UNK0553184	3	Lemmons	1841 Gramsie Road	Arden Hills	In Use	NA	NA	NA
UNK0553240	7b	Holmes	1921 Grant Road	Arden Hills	Sealed	NA	NA	NA
UNK0553272	7b	Matala	3623 Pascal Avenue	Arden Hills	Sealed	NA	NA	NA
UNK0553463	7b	Vondall	525 66th Avenue NE	Fridley	Sealed	NA	NA	NA
UNK0553687	7b	Regents of the University of Minnesota	650 25th Avenue SE	Minneapolis	Sealed	NA	NA	NA
UNK0553795	7b	Ball	6725 Channel Road NE	Fridley	Sealed	NA	NA	NA
UNK0553876	7b	Riley	4544 Second Street	Fridley	Sealed	NA	NA	NA
UNK0553884	7b	May	1836 Gramsie Road	Arden Hills	Sealed	NA	NA	NA
UNK0554873	7b	Sroga	2565 Charlotte Street	Roseville	Sealed	NA	NA	NA
UNK0554930	7b	Kimberly Wells, MN	1376 Mississippi Street NE	Fridley	Sealed	NA	NA	NA
UNK0555078	4b	No Owner Found	New Brighton	New Brighton	No Status Reported	NA	NA	NA
UNK0555079	4b	No Owner Found	New Brighton	New Brighton	No Status Reported	NA	NA	NA
UNK0555080	4b	No Owner Found	New Brighton	New Brighton	No Status Reported	NA	NA	NA
UNK0555081	4b	No Owner Found	New Brighton	New Brighton	No Status Reported	NA	NA	NA
UNK0555105	7b	Thomas L. Frattalone. MN	1203 W County Road E	Arden Hills	Sealed	NA	NA	NA
UNK0555458	7b	Holbrook	1863 Glenpaul Avenue	Arden Hills	Sealed	NA	NA	NA
UNK0556005	3	Anderson	4419 Old Highway 10	Arden Hills	In Use	NA	NA	NA
UNK0556143	7b	Vandegrift	2243 Rainbow Avenue	New Brighton	Sealed	NA	NA	NA
UNK0556457	75 7b	Collette	1644 Oak Avenue	Arden Hills	Sealed	NA	NA	NA

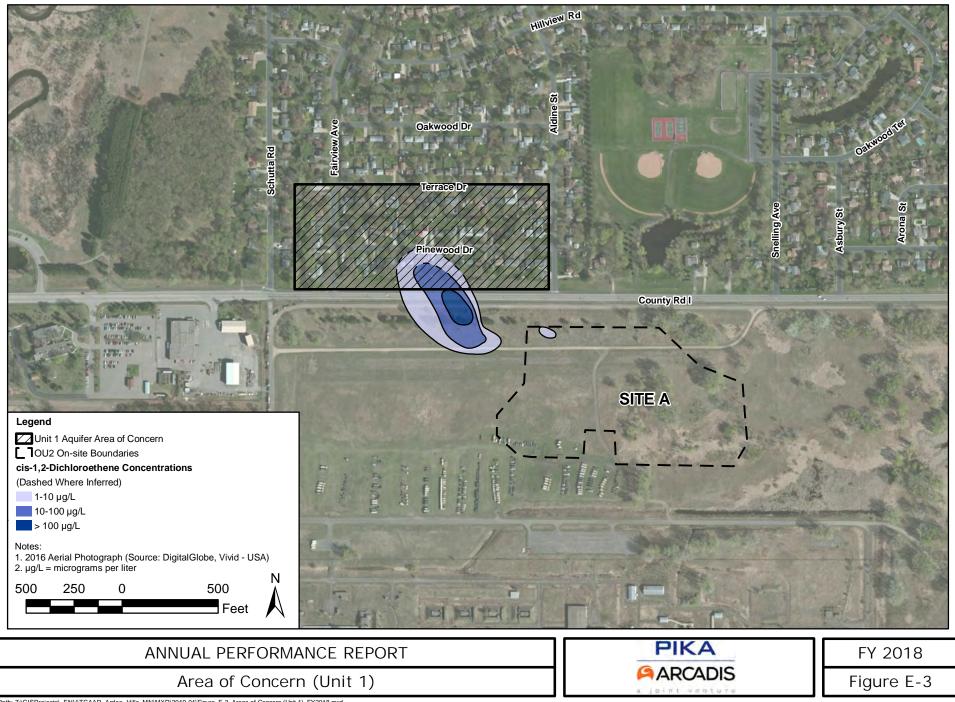
Unique Number	Category	Last Name or Business Name	Street	City	Status	Date Sealed	Depth	Date Drilled
UNK0556492	7b	VanKampen	1870 Beckman Avenue	Arden Hills	Sealed	NA	NA	NA
UNK0557942	7b	Greiner	1086 27th Avenue NW	New Brighton	Sealed	NA	NA	NA
UNK0558000	7b	Symons	1770 Hillview Road	Shoreview	Sealed	NA	NA	NA
UNK0558231	7b	Weber	575 Ninth Avenue NW	New Brighton	Sealed	NA	NA	NA
UNK0558235	7b	Lamoreux	2463 Ridge Lane	Mounds view	Sealed	NA	NA	NA
UNK0558236	7b	Fontaine	2288 County Road 10	Mounds view	Sealed	NA	NA	NA
UNK0559221	7b	Mark	1701 Fairview Avenue N	Falcon Heights	Sealed	NA	NA	NA

Unique	Category	Last Name or Business Name	Street	City	Use	Date Sealed
Number						
82922	7a	MN DOT		Arden Hills	Environmental Well	2/5/2018
277898	7a	Plummer	2551 Wheeler Avenue N	Roseville	Water Supply	10/28/2016
277902 278949	7a	Podlasek	4410 N Snelling Avenue	Arden Hills	Water Supply	1/30/2017
493585	7a	Kavaloski City of Mounds View	2917 Troseth Road	Roseville	Water Supply	2/15/2018
	7a		2466 Bronson Drive	Mounds View	Monitoring	5/5/2017
493586	7a	City of Mounds View	2466 Bronson Drive	Mounds View	Monitoring	5/15/2017
493587 493588	7a 7-	City of Mounds View	2466 Bronson Drive	Mounds View	Monitoring	5/5/2017
	7a	City of Mounds View	2466 Bronson Drive	Mounds View	Monitoring	5/5/2017
780901	7a	City of St. Paul	Raymond Avenue	St. Paul	Monitoring	10/18/2016
780903	7a	City of St. Paul	Raymond Avenue	St. Paul	Monitoring	10/18/2016
796623	7a	Brenntag Great Lakes, LLC	2130 Energy Park Drive	St. Paul	Env. Boring	3/16/2018
796624	7a	Brenntag Great Lakes, LLC	2130 Energy Park Drive	St. Paul	Environmental Well	3/16/2018
796625	7a	Brenntag Great Lakes, LLC	2130 Energy Park Drive	St. Paul	Environmental Well	3/16/2018
796626	7a	Brenntag Great Lakes, LLC	2130 Energy Park Drive	St. Paul	Environmental Well	3/16/2018
804277	7a	MPCA	Fridley	Fridley	Environmental Well	10/31/2017
804278	7a	MPCA	Fridley	Fridley	Environmental Well	10/23/2017
805467	7a	Metropolitan Council	Fridley	Fridley	Other	6/6/2017
817711	7a	MN DOT	New Brighton	New Brighton	Environmental Well	10/30/2017
817712	7a	MN DOT	New Brighton	New Brighton	Environmental Well	10/30/2017
817713	7a	MN DOT	New Brighton	New Brighton	Environmental Well	10/30/2017
817714	7a	MN DOT	New Brighton	New Brighton	Environmental Well	10/30/2017
817715	7a	MN DOT	New Brighton	New Brighton	Environmental Well	10/30/2017
817743	7a	City of Fridley	400 71st Avenue NE	Fridley	Monitoring	5/15/2017
817744	7a	City of Fridley	400 71st Avenue NE	Fridley	Monitoring	5/15/2017
817745	7a	City of Fridley	400 71st Avenue NE	Fridley	Monitoring	5/15/2017
817746	7a	City of Fridley	400 71st Avenue NE	Fridley	Monitoring	5/15/2017
817747	7a	City of Fridley	400 71st Avenue NE	Fridley	Monitoring	5/15/2017
828032	7a	US Army Environmental Command	4761 Hamline Avenue N	Arden Hills	Env. Boring	7/11/2017
828033	7a	US Army Environmental Command	4761 Hamline Avenue N	Arden Hills	Env. Boring	7/14/2017
828034	7a	US Army Environmental Command	4761 Hamline Avenue N	Arden Hills	Env. Boring	7/20/2017
H000297255	7a	Sand Companies, Inc.	Roseville	Roseville	Environmental Well	2/15/2018
H000297264	7a	No Owner Found	4889 Old Highway 8	Mounds View	Environmental Well	3/16/2018
H000297709	7a	Wall Development Comp., LLC	518 Malcolm Avenue SE	Minneapolis	Env. Boring	2/27/2017
H000297718	7a	Korean United Methodist Church	701 EIGHTH Avenue NW	New Brighton	Environmental Well	10/12/2017
H000320547	7a	United Properties Dev., LLC	3300 University Avenue SE	Minneapolis	Env. Boring	11/29/2016
H000325415	7a	Bremer Bank	4061 Lexington Avenue	Shoreview		8/31/2017
H000328474	7a	D and A Development, LLP	4825 Mustang Circle	Mounds View	Other	12/8/2016
H000331898	7a	St. Paul Regional Water Services	Little Canada	Little Canada	Monitoring	1/26/2017
H000335498	7a	Javelin	3757 Lexington Avenue N	Arden Hills		4/16/2018
H000337185	7a	Nelson	346 Third Avenue SE	New Brighton	Water Supply	10/26/2016
H000337195	7a	Welch	1592 Lois Drive	Shoreview	Water Supply	11/28/2016
H000338146	7a	Phan	1730 Hillview Road	Shoreview	Water Supply	10/4/2016
H000339448	7a	Palkowski	2816 Highway 88	St. Anthony	Water Supply	10/10/2016
H000339465	7a	Sylvester	1957 Creek Road	New Brighton	Water Supply	11/17/2016
H000339872	7a	Pape	1805 Lois Drive	Shoreview	Water Supply	5/31/2017

Unique						
Number	Category	Last Name or Business Name	Street	City	Use	Date Sealed
H000340447	7a	schauffert	20 Mid Oaks Lane	Roseville	Water Supply	5/22/2017
H000340742	7a	Hawkeye Hotels, Inc.	3920 Northwoods Drive	Arden Hills	Environmental Well	7/21/2017
H000340994	7a	Broadway Holdings, LLC	3501 Broadway Street	Minneapolis	Other	10/12/2016
H000341024	7a	Midwest Climbing	518 Malcolm Avenue SE	Minneapolis	Monitoring	11/25/2016
H000341812	7a	MN DOT	New Brighton	New Brighton	Monitoring	12/20/2016
H000341814	7a	City of New Brighton	New Brighton	New Brighton	Monitoring	12/19/2016
H000342170	7a	WEST	3076 Shorewood Lane	Roseville	Water Supply	11/6/2017
H000342171	7a	Eino Lammi Estate	7365 Spring Lake Road	Mounds View	Water Supply	10/13/2016
H000342172	7a	Eino Lammi Estate	7365 Spring Lake Road	Mounds View	Water Supply	10/13/2016
H000342173	7a	Eino Lammi Estate	7365 Spring Lake Road	Mounds View	Water Supply	10/13/2016
H000342194	7a	Boyer	345 Second Avenue SE	New Brighton	Water Supply	6/16/2017
H000342385	7a	MPCA	2112 Broadway Street NE	Minneapolis	Monitoring	12/7/2016
H000342416	7a	MPCA	2200 Old Highway 8	New Brighton	Monitoring	3/2/2017
H000342443	7a	McClain	1624 Osborne Road NE	Fridley	Water Supply	1/19/2017
H000343524	7a	City of Arden Hills	Arden Hills	Arden Hills	Env. Boring	8/23/2017
H000343527	7a	City of St. Anthony	St. Anthony	St. Anthony	Environmental Well	9/18/2017
H000343579	7a	Hunters Rock	2855 Anthony Lane S	St. Anthony	Environmental Well	7/2/2018
H000343883	7a	Wulff	4337 Old Highway 10	Arden Hills	Water Supply	5/8/2017
H000343970	7a	American Consulting Services	2108 University Avenue	St. Paul	Monitoring	1/24/2017
H000344429	7a	DJK, INC.	1814 Central Avenue NE	Minneapolis	Monitoring	11/14/2016
H000344464	7a	Hennepin Investors, LLC	950 E Hennepin Avenue	Minneapolis	Monitoring	4/4/2017
H000344484	7a	Vincent	700 24th Avenue SE	Minneapolis	Monitoring	2/8/2017
H000344491	7a	Schlieper	1991 Eldridge Avenue W	Roseville	Water Supply	2/28/2017
H000344594	7a	R and D Systems	614 McKinley PlaceNE	Minneapolis	Other	12/27/2017
H000344604	7a	Janzen	455 37th Avenue NE	Columbia Heights	Monitoring	2/16/2017
H000344636	7a	Goring	4500 Central Avenue	Columbia Heights	Monitoring	1/18/2017
H000344717	7a	Towey	6361 Able Street NE	Fridley	Water Supply	1/19/2017
H000345131	7a	Melcher	840 Mississippi Street NE	Fridley	Water Supply	4/11/2017
H000345145	7a	Ellefson	1918 Grant Road	Arden Hills	Water Supply	6/13/2017
H000345430	7a	Micom Corp.	475 Old Highway 8 NW	New Brighton	Monitoring	2/21/2017
H000345434	7a	Central Plaza Associates	4500 Central Avenue NE	Columbia Heights	Monitoring	2/28/2017
H000345448	7a	Realterm Nat, Ben Andreycak	50 14th Street NW	New Brighton	Monitoring	4/10/2017
H000345869	7a	Loerzel	1770 Oakcrest Avenue	Roseville	Water Supply	9/21/2017
H000345881	7a	Lane	1459 15th Terrace NW	New Brighton	Water Supply	4/25/2017
H000346185	7a	Twin Cities Die Casting	1070 33RD Avenue SE	Lauderdale	Environmental Well	9/27/2017
H000346186	7a	Fulton Family Partnership	2550 Wabash Avenue	St. Paul	Environmental Well	10/16/2017
H000346221	7a	Bona Brothers	5311 University Avenue NE	Fridley	Monitoring	4/24/2017
H000346337	7a	Leasing	2195 County Road C2 W	Roseville	Monitoring	3/17/2017
H000346346	7a	Goers	125 Lowry Avenue NE	Minneapolis	Monitoring	3/30/2017
H000346406	7a	Lavigne	10121 Palm Street NW	Coon Rapids	Water Supply	5/3/2017
H000346591	7a	API Group, Inc.	New Brighton	New Brighton	Environmental Well	2/6/2018
H000346674	7a	Wash on Central	7699 Highway 65 N	Fridley	Env. Boring	3/29/2017
H000346687	7a	City of Minneapolis	Minneapolis	Minneapolis	Env. Boring	4/27/2017
H000346697	7a	Mulcahy	3391 Labore Road	Vadnais Heights	Environmental Well	5/7/2017
H000346763	7a	Makintyre	2143 Midlothian Road	Roseville	Water Supply	5/11/2017


Unique						
	Category	Last Name or Business Name	Street	City	Use	Date Sealed
Number H000346772	70	Lovelace		Charaview	Water Supply	6/7/2017
H000346772	7a 7a	Dickson	1683 Lois Drive 2187 Rosewood Lane N	Shoreview Roseville	Water Supply	6/7/2017 3/29/2017
H000346864		Bass	3150 Shorewood Drive	Arden Hills	Water Supply	5/8/2017
H000340804 H000347035	7a	1 =		I	Water Supply	7/25/2017
	7a	Tyson Trucking	185 Fifth Avenue SW	New Brighton	Monitoring	
H000347056	7a	Smith	932 County Road C2	Roseville	Water Supply	7/17/2017
H000347060	7a	Trudell	1911 Fairview Avenue N	Falcon Heights	Water Supply	9/12/2017
H000347338	7a	Olson	3027 Shorewood Lane	Roseville	Water Supply	8/30/2017
H000347835	7a	Freemont	1985 Glen Paul Avenue	Arden Hills	Water Supply	7/24/2017
H000348166	7a	City of Mounds View	2466 Bronson Drive	Mounds View	Monitoring	6/13/2017
H000348173	7a	Hawkins, Inc.	3100 E Hennepin Avenue	Minneapolis	Monitoring	6/22/2017
H000348184	7a	Sor Real Estate, LLC	1905 Lake Valentine Road	New Brighton	Monitoring	7/12/2017
H000348610	7a	Pulte Group	Arden Hills	Arden Hills		7/26/2017
H000348649	7a	Lindsey	3900 Bethel Drive	Arden Hills		9/7/2017
H000348901	7a	Evanson	3191 Lake Johanna Boulevard	Arden Hills	Water Supply	10/19/2017
H000348909	7a	Gupta	1681 Ridgewood Lane N	Roseville	Water Supply	8/14/2017
H000349023	7a	Cassidy	1833 Gramsie Road	Arden Hills	Water Supply	11/15/2017
H000349499	7a	Smith	1831 Tatum Street	Falcon Heights	Water Supply	3/15/2018
H000349602	7a	Portillos Restaurant	Roseville Mall Drive	Roseville		8/22/2017
H000349628	7a	Prospect Foundry	1225 Winter Street NE	Minneapolis	Environmental Well	11/14/2017
H000349813	7a	Bethel University	3900 Bethel Drive	Arden Hills	Environmental Well	10/13/2017
H000349854	7a	CRESA Minneapolis	Kasota Avenue	St. Paul	Env. Boring	11/9/2017
H000349881	7a	Midland Hills Golf Course	1985 Lake Street	Roseville	Environmental Well	8/7/2017
H000349894	7a	City of Minneapolis; Sewer & Water		Minneapolis	Environmental Well	8/22/2017
H000349966	7a	Meritex Highcrest DC III, LLC	2470 Highcrest Road	Roseville	Environmental Well	9/14/2017
H000350058	7a	Tomas	2401 Lowry Avenue NE	St. Anthony	Environmental Well	8/18/2017
H000350063	7a	BNSF Railway Co.	640 Malcom Avenue SE	St. Paul	Environmental Well	9/19/2017
H000350087	7a	Fridley Public Schools	6000 W Moore Lake Drive NE	Fridley	Environmental Well	11/30/2017
H000350212	7a	City of Mounds View	2466 Bronson Drive	Mounds View	Monitoring	8/4/2017
H000350233	7a	Herbert W. Tousley Fourth	2300 Wycliff Street	St. Paul	Environmental Well	8/17/2017
H000350263	7a	Gurak	1567 Oak Avenue	Arden Hills	Water Supply	8/23/2017
H000350267	7a	Ward	1320 69th Avenue NE	Fridlev	Water Supply	8/22/2017
H000350692	7a	Vik	6725 Channel Road	Fridley	Water Supply	12/27/2017
H000350699	7a	Linke	1691 Oakwood Drive	Shoreview	Water Supply	4/11/2018
H000351389	7a	Univar USA Inc.	2313 Wycliff Street	St. Paul	Environmental Well	11/2/2017
H000351478	7a	Mim	2631 NE Sixth Street	Minneapolis	Environmental Well	12/8/2017
H000351487	7a	Mim	829 Marshall Street NE	Minneapolis	Environmental Well	5/7/2018
H000351495	7a	Mim	3805 Second Street NE	Columbia Heights	Environmental Well	5/2/2018
H000351524	7a	Schill	5062 Greenwood Drive	Mounds View	Water Supply	8/8/2018
H000351740	7a	Franke	7635 Groveland Road	Mounds View	Water Supply	9/11/2017
H000351809	7a	Leopold	1644 Oak Avenue	Arden Hills	Water Supply	4/5/2018
H000351838	7a	Boettner	3090 Wilder Street N	Roseville	Water Supply	5/30/2018
H000352224	7a	Buzzeli	4853 University Avenue NE	Columbia Heights	Water Supply	12/13/2017
H000352225	7a	Coldwell Banker Burnet	1921 Grant Road	Arden Hills	Water Supply	12/20/2017
H000352226	7a 7a	Johnson	1646 Gardena Avenue NE	Fridley	Water Supply	11/16/2017
H000352245	7a 7a	Diedrich	2545 Herschel Street	Roseville	Water Supply	11/20/2017
1000002240	ia	Diculion		TOSEVILLE		11/20/2017


Unique	Category	Last Name or Business Name	Street	City	Use	Date Sealed
Number						
H000352551	7a	Clevelander, LLC	2785 Fairview Avenue N	Roseville	Environmental Well	9/22/2017
H000352587	7a	The Javelin Group	2285 Hampden Avenue W	St. Paul	Environmental Well	2/16/2018
H000352592	7a	Reiling	3058 Old Highway 8	Roseville	Environmental Well	4/23/2018
H000352843	7a	Smith	2005 Longview Drive	New Brighton	Water Supply	11/20/2017
H000352844	7a	Smith	2005 Longview Drive	New Brighton	Water Supply	11/20/2017
H000352845	7a	Fox	1782 Terrace Drive	Shoreview	Water Supply	11/30/2017
H000352963	7a	City of New Brighton	New Brighton	New Brighton	Environmental Well	1/19/2018
H000352976	7a	City of Roseville	Roseville	Roseville	Environmental Well	12/8/2017
H000352977	7a	City of Roseville	Roseville	Roseville	Environmental Well	12/8/2017
H000353013	7a	Mounds View Public Schools	2101 14th Street NW	New Brighton	Environmental Well	3/8/2018
H000353028	7a	McGough Construction Co., Inc.	2785 Fairview Avenue N	Roseville	Environmental Well	1/18/2018
H000353553	7a	Sullivan	2931 Partridge Road	Roseville	Environmental Well	10/17/2017
H000353554	7a	Irilbeck	4920 Central Avenue NE	Columbia Heights	Environmental Well	10/18/2017
H000353619	7a	Nellis	651 11th Avenue NW	New Brighton	Water Supply	5/18/2018
H000353721	7a	MPCA	5000 Central Avenue NE	Columbia Heights	Environmental Well	2/22/2018
H000353730	7a	MN DOT	St. Paul	St. Paul	Environmental Well	11/16/2017
H000353731	7a	MN DOT	St. Paul	St. Paul	Environmental Well	11/15/2017
H000353737	7a	MN DOT	St. Paul	St. Paul	Environmental Well	11/15/2017
H000353738	7a	MN DOT	St. Paul	St. Paul	Environmental Well	11/15/2017
H000353833	7a	Kunz	2280 County Road I	Mounds View	Other	6/6/2018
H000353834	7a	Kunz	2280 County Road I	Mounds View	Environmental Well	7/10/2018
H000354088	7a	Salad	3836 Stinson Boulevard	Columbia Heights	Environmental Well	11/17/2017
H000354233	7a	ISD 623	1744 County Road B W	Roseville	Environmental Well	2/14/2018
H000354245	7a	ISD 623	1910 County Road B W	Roseville	Environmental Well	2/8/2018
H000354376	7a	Ramsey County	1661 Highway 96	Arden Hills	Env. Boring	5/8/2018
H000354377	7a	Ramsey County	1661 Highway 96	Arden Hills	Env. Boring	5/2/2018
H000354380	7a	ISD 621	5100 Edgewood Drive N	Mounds View	Environmental Well	5/2/2018
H000354398	7a	ISD 621	1900 Lake Valentine Road	Arden Hills	Env. Boring	5/23/2018
H000354470	7a	Land M Holding Co., LLP	2250 University Avenue W	St. Paul		7/31/2018
H000354700	7a	MN Relocation	5085 Red Oak Drive	Mounds View	Water Supply	3/13/2018
H000354724	7a	CRESA Minneapolis	2575 Kasota Avenue	St. Paul	Environmental Well	12/20/2017
H000354750	7a	Wentworth	1799 Stanbridge Avenue	Roseville	Water Supply	8/28/2018
H000354895	7a	Village Auto Works	2760 Fairview Avenue N	Roseville	Environmental Well	1/23/2018
H000354907	7a	PS Midwest Hunting Valley, INC.	Hunting Valley Road	St. Paul	Environmental Well	3/19/2018
H000354908	7a	PS Midwest Hunting Valley, INC.	Hunting Valley Road	St. Paul	Environmental Well	3/21/2018
H000354909	7a	MN DOT	Roseville	Roseville	Environmental Well	4/26/2018
H000354910	7a	MN DOT	Roseville	Roseville	Environmental Well	4/26/2018
H000354911	7a	MN DOT	Arden Hills	Arden Hills	Environmental Well	4/26/2018
H000354912	7a	MN DOT	New Brighton	New Brighton	Environmental Well	4/27/2018
H000354913	7a	MN DOT	New Brighton	New Brighton	Environmental Well	3/21/2018
H000354914	7a	MN DOT	New Brighton	New Brighton	Environmental Well	3/21/2018
H000355080	7a	Homepride, INC.	4544 Second Street NE	Fridley	Water Supply	1/31/2018
H000355100	7a	How	1770 Hillview Road	Shoreview	Water Supply	5/21/2018
H000355301	7a	B31 Transfer Road LLC	2109 University Avenue	St. Paul	Environmental Well	12/7/2017
H000355302	7a	Space Center	2501 Rosegate	Roseville	Environmental Well	2/12/2018


Unique Number	Category	Last Name or Business Name	Street	City	Use	Date Sealed	
H000355306	7a	Hoff Machinery	7645 Baker Street NE	Fridley	Environmental Well	3/2/2018	
H000355311	7a	TCDC	1070 33rd Avenue SE	Lauderdale	Other	4/19/2018	
H000355312	7a	Tetra Tech	2975 Partridge Road	Roseville	Environmental Well	4/24/2018	
H000355334	7a	Alden	1086 27th Avenue NW	New Brighton	Water Supply	5/23/2018	
H000355340	7a	Taylor	1803 Venus Avenue	Arden Hills	Water Supply	7/13/2018	
H000355379	7a	Rysgaard	1937 Eustis Street	Lauderdale	Water Supply	5/22/2018	
H000355387	7a	Perkins	3655 Hamline Avenue	Arden Hills	Water Supply	6/28/2018	
H000355390	7a	Olson	3011 Shorewood Lane	3011 Shorewood Lane Roseville		7/19/2018	
H000355391	7a	Olson	1732 Millwood Avenue	Roseville	Water Supply	7/19/2018	
H000355396	7a	Johnson	5607 Fairview Avenue	Shoreview	Water Supply	8/16/2018	
H000355400	7a	Tchobanoff	3955 Glenview Avenue	Arden Hills	Water Supply	9/6/2018	
H000355596	7a	Hakomaki	2222 Marion Road	Roseville	Water Supply	6/14/2018	
H000355869	7a	Ashlin	5925 Fifth Street NE	Fridley	Water Supply	6/28/2018	
H000355905	7a	Nelson	2205 County Road H	New Brighton		5/8/2018	
H000355933	7a	City of St. Paul Public Works	St. Paul	St. Paul	Environmental Well	3/22/2018	
H000355940	7a	MN Commercial Railway CO.			Environmental Well	3/15/2018	
H000355971	7a	West Real Estate	3015 Centre Point Drive	Roseville	Environmental Well	4/25/2018	
H000356015	7a	Ramsey County Public Works	Roseville	Roseville		6/21/2018	
H000356019	7a	City of New Brighton	New Brighton	New Brighton	Environmental Well	6/1/2018	
H000356943	7a	Northpond Partners	558 Vandalia Street	St. Paul	Environmental Well	8/29/2018	
H000357164		NE HYDE, LLC	2125 E Hennepin Avenue	Minneapolis	Environmental Well	8/27/2018	
H000357192	7a	L and M Holdings Co., LLP	2250 University Avenue W	St. Paul	Env. Boring	7/31/2018	
H000357962	7a	Gervais	5079 Greenwood Drive	Mounds View	Water Supply	8/15/2018	
H000358017	7a	Bona Brothers Minnoco	5311 University Avenue NE	Fridley	Environmental Well	6/12/2018	
H000358021	7a	700 Emerald, LLC	700 Emerald Street SE	St. Paul	Environmental Well	6/26/2018	
H000358031	7a	Olson	1847 Beckman Avenue	Arden Hills	Water Supply	7/18/2018	
H000358796	7a	Mim	642 Moroe Street NE	Minneapolis	Environmental Well	8/14/2018	
H000358851	7a	Twin Properties Group, LLC	427 Harrison Street NE	Minneapolis	Environmental Well	6/28/2018	
H000359074	7a	Gable	1701 Fairview Avenue N	Falcon Heights	Water Supply	7/13/2018	
H000359082	7a	Reiher	1965 Autumn Street	Falcon Heights	Water Supply	7/26/2018	
H000359252	7a	Bursack	515 12th Avenue NW	New Brighton	Water Supply	8/8/2018	
H000359820	7a	IDS 621	1800 Fifth Street NW	New Brighton		8/8/2018	
H000359837	7a	Senior Housing Partners	1910 County Road D W	Roseville	Environmental Well	8/22/2018	
H000360667	7a	MN Solvents Chemical Corp.	2340 Rose Place W	Roseville	Environmental Well	9/5/2018	
H000360782	7a	Iron Point Partners, LLC	Prior Avenue	Roseville	Environmental Well	5/30/2018	
H000360783	7a	Civil Site Group, INC.	675 37th Avenue NE	Columbia Heights	Environmental Well	5/30/2018	
H000362427	7a	Rose Marie Will, Laurence Will, Trustee	2285 Rainbow Avenue	New Brighton	Water Supply	9/24/2018	
H000362726	7a	Ryan Companies US, INC.	2814 Cleveland Avenue N	Roseville	Environmental Well	9/27/2018	

Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2019-01\Figure_E-1_Well Inventory Study Area_FY2018.mxd Date: 1/30/2019 Time: 9:54:37 AM User: kgpeters

Path: Z:\GISProjects_ENVITCAAP_Arden_Hills_MN\MXD\2019-01\Figure_E-2_Areas of Concern (Unit 3 and Unit 4)_FY2018.mxd Date: 1/30/2019 Time: 12:03:53 PM User: kgpeters

Path: Z:\GISProjects_ENV\TCAAP_Arden_Hills_MN\MXD\2019-01\Figure_E-3_Areas of Concern (Unit 1)_FY2018.mxd Date: 1/30/2019 Time: 12:10:59 PM User: kgpeters

Figure E-4 Annual Requirements for Maintaining Well Inventory Database

Twin Cities Army Ammunitions Plant Arden Hills, Minnesota

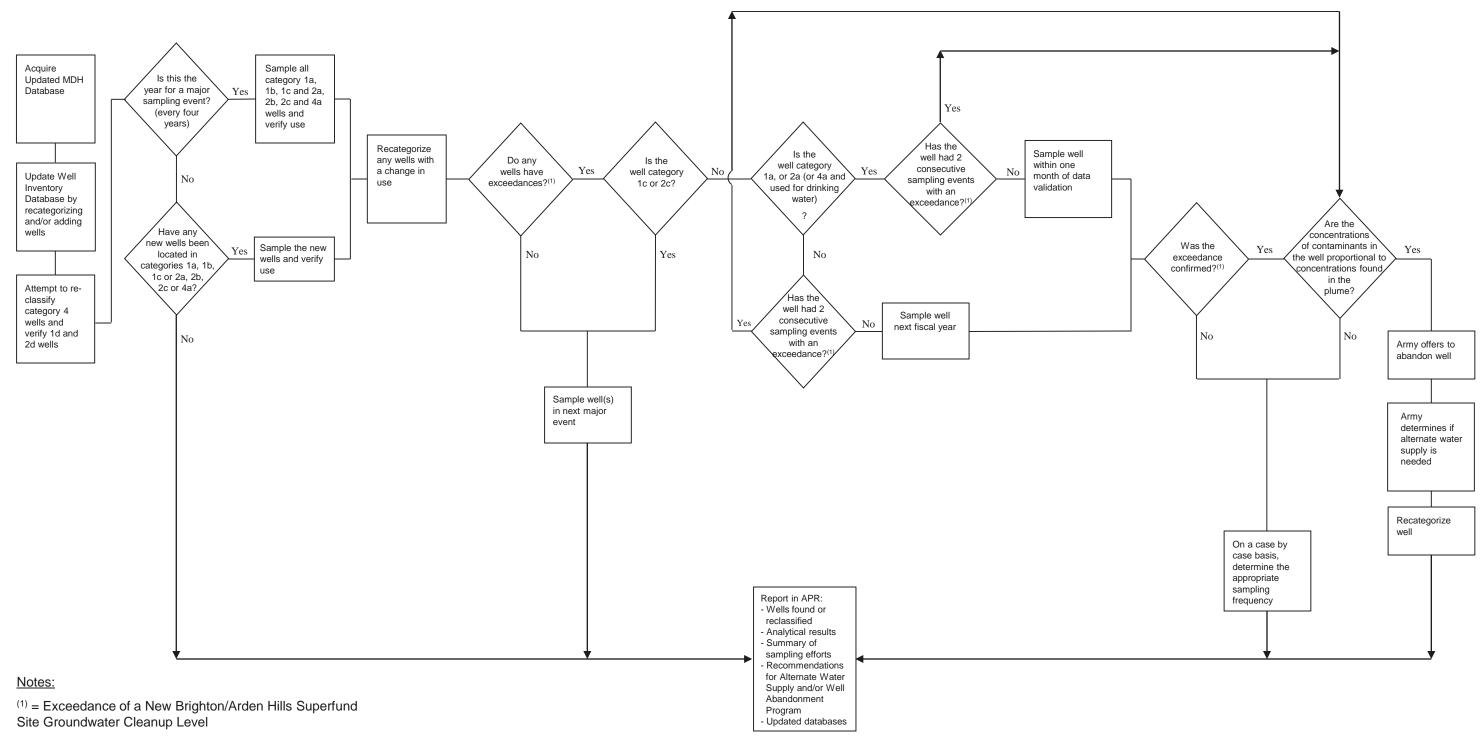
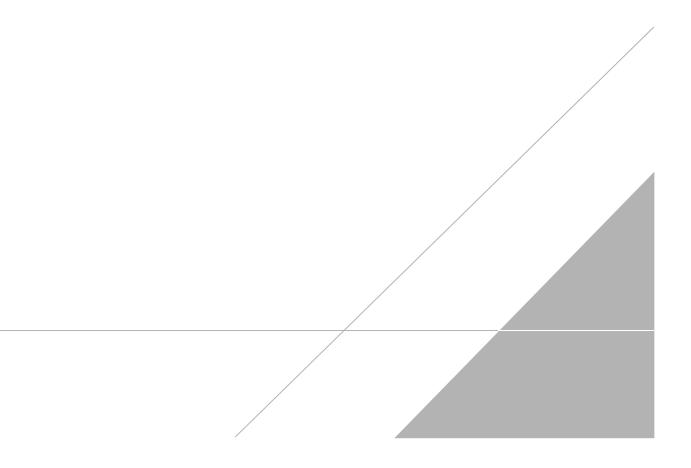



Figure generated by Wenck Associates, Inc.

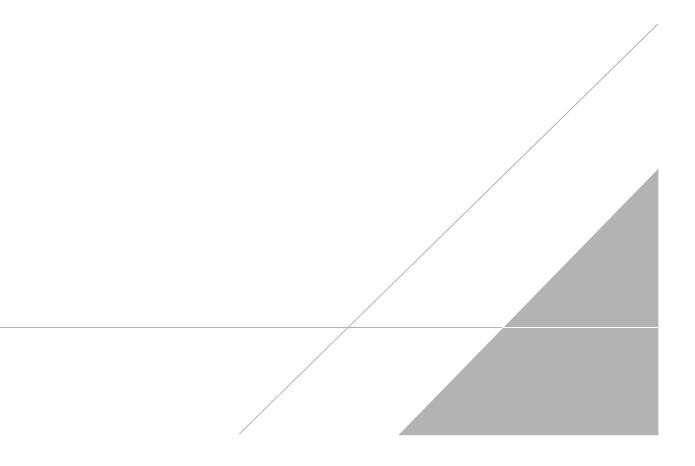
APPENDIX F

Annual Site Inspection Checklist for Land Use Controls

ANNUAL SITE INSPECTION CHECKLIST FOR LAND USE CONTROLS

Operable Unit 2, New Brighton/Arden Hills Superfund Site

Date: <u>7/30/2018</u>


Inspected by: Nick Smith, Mary Lee, Katy Grant

Period Covered: _ From prior annual inspection (8/10/2017) to above date

		BLANK	ET LUCs		OTHER LUC AREAS		SITES W	ITH ADDIT	IONAL LU	Cs FOR SC	DIL COVER	S
					Area w/Restricted Commercial Use	С	D	E	G	н	129-15	Outdoor Firing Rang
Property owner:	BRAC	N.G.	Reserve	R.C.	N.G.	BRAC	N.G.	N.G.	N.G.	N.G.	N.G.	N.G.
Soil LUCs												
Are there any land uses that result in a non-compliant exposure versus the exposure assumptions described in the LUCRD?	No	No	No	No	No		(Soil L	UCs are co	overed unde	er the Blank	ket LUCs)	
Soil Cover LUCs												
Has there been any excavation activity or any other man-made soil disturbance at the site?	N/A	N/A	N/A	N/A	N/A	No	No	No	No	No	No	No
Are there any areas of the soil cover that have inadequate vegetative cover?	N/A	N/A	N/A	N/A	N/A	No	No	No	No	No	No	No
Has there been any damage to run-on/runoff controls (swales, berms, riprap, etc.)?	N/A	N/A	N/A	N/A	N/A	No	No	No	No	No	No	No
Has there been any damage to or removal of the signs marking the edge of the soil cover?	N/A	N/A	N/A	N/A	N/A	No	No	No	No	No	No	No
If the soil cover has a permeability requirement, is there any woody vegetation present that exceeds 2-inch diameter?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	No	N/A	N/A	N/A
Has there been any damage to or removal of the concrete slab that serves as a protective cover?	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Groundwater LUCs												
Have any wells been installed that withdraw water from a contaminated aquifer, without MDH/MPCA/USEPA approval?	No	No	No	No	10	roundwata	r I IICe ara		ndor the Bl	ankot LUCa	.)	
Has there been any damage to or interference with any groundwater remedy infrastructure (wells, piping, treatment systems, etc.)?		No	No	No	(Groundwater LUCs are covered under the Blanket LUCs)							
BRAC = Base Realignment and Closure Division N.G. = MN A	rmy Nation				bages as necessary): Reserve = U.S. A	rmy Reser	ve	R.C. = Ra	msey Coun	ty		
Based on the annual site inspection, the undersigned hereby certifies th Alternatively, any known deficiences and completed or planned actions			property owi		bove-described land use c			nplied with	for the perio	od noted.		
Nicholas Smith, U.S. Army Environmental Command					Description of Deficiency(ies) attach	ed?	□ Yes	🗆 No (noi	ne were ide	entified)	

APPENDIX G

Site K and TGRS Operational Data

Appendix G.1

Inspection and Maintenance Activities Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

October 2017	
10/3/2017	The system cycled between inspections. Down time: None.
10/4/2017	Increased the influent flow rate and decreased the effluent flow rate. Down time: None.
10/7/2017	Increased the influent flow rate and decreased the effluent flow rate. Down time: None.
10/11/2017	Increased the influent flow rate. Down time: None.
10/17/2017	Increased the influent flow rate and decreased the effluent flow rate. Down time: None.
10/19/2017	The system cycled between inspections. Down time: None.
10/26/2017	Increased the influent flow rate and decreased the effluent flow rate. Down time: None.
10/27/2017	The system cycled between inspections. Down time: None.
10/28-29/2017	The system cycled between the inspections. Decreased the influent flow rate and increased the effluent flow rate each day. Down time: None.
10/30/2017	The system cycled between inspections. Down time: None.
10/31/2017	The system cycled between inspections. Decreased the influent flow rate. Down time: None.
November 2017	
11/3/2017	Increased the influent flow rate slightly. Down time: None.
11/4/2017	Increased the influent flow rate slightly. Down time: None.
11/6/2017	The system was off during the inspection due to normal system cycling. Down time: None.

Appendix G.1

Inspection and Maintenance Activities Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

11/7/2017	The system was off upon arrival and the "Air Stripper High/High Water Level" light was lit. Reset the PLC and restarted the system. The system restarted normally. Reset the influent and effluent flow rates. Down time: 21.5 hours.
11/8/2017	Increased the influent flow rate slightly. Down time: None.
11/9/2017	Increased the influent flow rate slightly. Down time: None.
11/11/2017	Increased the influent flow rate slightly. Down time: None.
11/12/2017	Decreased the influent flow rate slightly. Down time: None.
11/14/2017	Decreased the influent flow rate and increased the effluent flow rate slightly. Down time: None.
11/17/2017	There was a site wide power outage which ceased power to the treatment system. Xcel Energy was contacted and they repaired the problem. Turned the treatment system back on and observed normal operation. The power outage blew the heater core in the building heater. Contacted Preferred Electric and they repaired the heater. Down time: 10 hours.
11/19/2017	Increased the influent flow rate slightly. Down time: None.
11/20/2017	The system was off during the inspection due to normal system cycling. Down time: None.
11/22/2017	The system was off during the inspection due to normal system cycling. Down time: None.
11/23/2017	No inspection was performed due to the Thanksgiving Day holiday. Meter readings were estimated. Down time: None.
11/26/2017	Increased the influent flow rate slightly. Down time: None.
11/27/2017	Increased the influent flow rate slightly.

Appendix G.1

	Down time: None.
11/28/2017	Decreased the influent flow rate and increased the effluent flow rate slightly. Down time: None.
11/29/2017	Increased the influent flow rate and decreased the effluent flow rate slightly. Down time: None.
11/30/2017	The system was off during the inspection due to normal system cycling. Down time: None. Down time: None.
December 2017 12/1/2017	The system was off upon arrival and the "Low Air Flow" light was lit. Reset the PLC and restarted the system. The system restarted normally. Reset the influent and effluent flow rates. Down time: None.
12/3/2017	The system was off during the inspection due to normal system cycling. Down time: None.
12/4/2017	Increased the influent flow rate. Down time: None.
12/5/2017	Decreased the influent flow rate. Down time: None.
12/6/2017	The system was off during the inspection due to normal system cycling. Down time: None.
12/7/2017	Increased the influent flow rate and decreased the effluent flow rate. Down time: None.
12/10/2017	The system was off during the inspection due to normal system cycling. Down time: None.
12/20/2017	Increased the influent flow rate and decreased the effluent flow rate. Down time: None.
12/25/2017	Christmas Day. The inspection was not performed. Meter readings were estimated. Down time: None.
12/26/2017	The system was off during the inspection due to normal system cycling. Down time: None.

January 2018 1/4/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/5/2018	Increased the influent flow rate slightly and decreased the effluent flow rate slightly. Down time: None.
1/7/2018	Decreased the influent flow rate slightly and increased the effluent flow rate. Down time: None.
1/8/2018	Increased the influent flow rate slightly. Down time: None.
1/10/2018	Decreased the influent flow rate slightly. Down time: None.
1/16/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/18/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/19/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/20/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/22/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/23/2018	Increased the influent flow rate slightly. Down time: None.
1/24/2018	Increased the influent flow rate slightly and decreased the effluent flow rate slightly. Down time: None.
1/25/2018	Decreased the influent flow rate slightly and increased the effluent flow rate. Down time: None.
1/26/2018	The system was off during the inspection due to normal system cycling. Down time: None.

1/27/2018	Increased the influent flow rate slightly. Down time: None.
1/29/2018	The system was off during the inspection due to normal system cycling. Down time: None.
1/31/2018	The system was off during the inspection due to normal system cycling. Down time: None.
February 2018	
2/2/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/4/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/6/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/7/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/8/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/9/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/10/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/13/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/15/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/16/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/17/2018	The system was off during the inspection due to normal system cycling. Down time: None.
2/18/2018	The system was off during the inspection due to normal system cycling.

Inspection and Maintenance Activities Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

Down time: None.

- 2/20/2018 The system was off during the inspection due to normal system cycling. Down time: None.
 2/21/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 2/22/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 2/23/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 2/24/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 2/25/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 2/26/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 2/28/2018 The system was off during the inspection due to normal system cycling. Down time: None.

March 2018

- 3/1/2018The system was off during the inspection due to normal system cycling.
Down time: None.
- 3/2/2018 The system was off during the inspection due to normal system cycling. Down time: None.
- 3/4/2018The system was off during the inspection due to normal system cycling.
Down time: None.
- 3/6/2018The system was off during the inspection due to normal system cycling.
Down time: None.
- 3/7/2018The system was off during the inspection due to normal system cycling.
Down time: None.
- 3/8/2018The system was off during the inspection due to normal system cycling.
Down time: None.

3/10/2018	The system was off during the inspection due to normal system cycling. Down time: None.
3/15/2018	The system was off during the inspection due to normal system cycling. Down time: None.
3/25/2018	The inspection was not performed. Meter readings were estimated. Down time: None.
April 2018	
4/14/2018	Increased the influent flow rate slightly. Down time: None.
4/15/2018	The inspection was not performed. Meter readings were estimated. Down time: None.
4/16/2018	Increased the influent flow rate slightly. Down time: None.
4/17/2018	Increased the influent flow rate slightly. Down time: None.
4/21/2018	Increased the influent flow rate slightly. Down time: None.
4/27/2018	Increased the influent flow rate slightly. Down time: None.
4/28/2018	Increased the influent flow rate slightly. Down time: None.
4/30/2018	Increased the influent flow rate slightly. Down time: None.
May 2019	
May 2018 5/1/2018	Turned the building heater off and turned on the building vent fan. Down time: None.
5/4/2018	Increased the influent flow rate and decreased the effluent flow rate slightly. Down time: None.
5/9/2018	Preferred Electric performed the annual electrical inspection. Down time: None.

5/10/2018	The high/high water level light was on. Reset the PLC and the pump restarted normally. Exercised the influent and effluent flow control valves and reset the influent and effluent flow rates. Possibly the electrician bumped the influent flow control valve which increased the flow rate causing the high/high water level alarm. Down time: 21 hours.
5/11/2018	Turned the treatment system off and replaced the tower packing. Cleaned the inside of the treatment system and the building. Down time: 5.5 hours.
5/12/2018	Increased the influent flow rate. Down time: None.
5/14/2018	Increased the influent flow rate. Down time: None.
5/15/2018	Increased the influent flow rate slightly. Down time: None.
5/16/2018	Increased the influent flow rate slightly. Down time: None.
5/17/2018	Increased the influent flow rate. Down time: None.
5/19/2018	Increased the influent flow rate. Down time: None.
5/20/2018	Increased the influent flow rate. Down time: None.
5/24/2018	Increased the influent flow rate. Down time: None.
5/26/2018	The inspection was not performed due to Memorial Day. Meter readings were estimated.
	Down time: None.
June 2018 6/4/2018	Increased the influent flow rate and decreased the effluent flow rate slightly. Down time: None.
6/5/2018	Decreased the influent flow rate.

Inspection and Maintenance Activities Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

Down time: None.

6/9/2018	Increased the influent flow rate. Down time: None.
6/12/2018	Increased the influent flow rate slightly. Down time: None.
6/13/2018	Increased the influent flow rate slightly. Down time: None.
6/16/2018	Increased the influent flow rate. Down time: None.
6/23/2018	Increased the influent flow rate. Down time: None.
6/25/2018	Increased the influent flow rate. Down time: None.
6/29/2018	Increased the influent flow rate. Down time: None.
July 2018 7/4/2018	Independence Day holiday. The daily inspection was not performed. Meter readings were estimated. Down time: None.
7/5/2018	Increased the influent flow rate. Down time: None.
7/8/2018	Increased the influent flow rate. Down time: None.
7/9/2018	Decreased the influent flow rate. Down time: None.
7/11/2018	Increased the influent flow rate. Down time: None.
7/13/2018	The system was off. Troubleshooting indicated a blown sump pump motor. Replaced the sump pump with a new one from inventory. Restarted the system, reset the flow rates and the system ran normally.

Inspection and Maintenance Activities Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

- 7/22/2018 Increased the influent flow rate. Down time: None.
- 7/23/2018 Increased the influent flow rate. Down time: None.
- 7/24/2018 Increased the influent flow rate. Down time: None.
- 7/25/2018 Increased the influent flow rate. Down time: None.
- 7/29/2018 Increased the influent flow rate. Down time: None.
- 7/29/2018 Increased the influent flow rate. Down time: None.

August 2018

8/1/2018 The sump pump was sucking air indicating the pump was not at the bottom of the manhole. Lowered the pump to the full extent of the length of the power wire and repositioned the floats. Restarted the pump and reset the influent and effluent flow rates. Observed normal operation.

Down time: 1 hour.

- 8/2/2018 The sump pump was again sucking air. Added (spliced) wire to the power wire to be able to lower the pump to the bottom of the manhole. Also, cleaned out the bottom of the manhole and repositioned the floats. Restarted the pump and reset the influent and effluent flow rates. Observed normal operation. Down time: 8 hours.
- 8/3/2018 Increased the influent flow rate. Down time: None.
- 8/4/2018 Increased the influent flow rate. Down time: None.
- 8/5/2018 Increased the influent flow rate. Down time: None.
- 8/8/2018 Increased the influent flow rate. Down time: None.
- 8/12/2018 Increased the influent flow rate.

Inspection and Maintenance Activities Fiscal Year 2018 Site K, OU2 Arden Hills, Minnesota

Down time: None.

8/18/2018	Increased the influent flow rate. Down time: None.
8/21/2018	The system was off and the flow meter low water flow rate light was on. Reset and restarted the system. Exercised the influent and effluent flow control valves and reset the influent and effluent flow rates. Observed normal operation. Down time: 11.5 hours.
8/22/2018	Increased the influent flow rate and decreased the effluent flow rate slightly. Also installed a new thermometer in the building. Down time: None.
8/25/2018	Increased the influent flow rate. Down time: None.
8/27/2018	Cleaned the sump site glass. Increased the influent flow rate. Down time: None.
8/28/2018	Increased the influent flow rate. Down time: None.
8/29/2018	Increased the influent flow rate. Down time: None.
8/30/2018	The system was off and the flow meter low water flow rate light was on. Unable to start the system in auto. Started the system in hand and then quickly switched the system to auto. The system ran normally. Down time: 19.5 hours.
8/31/2018	To troubleshoot the system not starting in auto because of the low water flow rate, used the display keypad to reset the water low flow alarm set point from 5 seconds to 10 seconds. Started the system in auto and the system started normally. Down time: None.
September 2018	
9/2/2018	Increased the influent flow rate. Down time: None.

9/3/2018 Labor Day holiday. The daily inspection was not performed. Meter reading estimated. Down time: None.

- 9/4/2018 The system was down upon arrival due to normal system cycling. Down time: None.
- 9/5/2018 The system was down upon arrival and the "high/high water level" light was on. Reset the PLC and restarted the system. Exercised the influent and effluent flow control valves and reset their flow rates. Normal operation observed. Down time: 9.5 hours.
- 9/6/2018 Increased the influent flow rate. Down time: None.
- 9/8/2018 Increased the influent flow rate. Down time: None.
- 9/13/2018 Increased the influent flow rate. Down time: None.
- 9/19/2018 Increased the influent flow rate. Down time: None.
- 9/25/2018 Increased the influent flow rate. Down time: None.
- 9/30/2018 Increased the influent flow rate. Down time: None.

October 2017

- 10/2-3/2017 Pumphouse B9; Each day, the light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was running normally. There is a contractor working in the vicinity of the B5 pumphouse. Down time: 31.5 hours.
- 10/7-12/2017 Pumphouse SC2; The RPZ was leaking. Attempted to stop the leak but the leak continued. Turned the pump and breaker to off and closed the gate valve. Jayhawk Mechanical repaired the RPZ. Turned the pump on but the flow rate would not register on the water meter. Removed and cleaned the water meter. The meter shows flow now but only at 2 gallons per minute. Daily meter readings were estimated to reflect 2 gallons per minute.

Down time: 122.5 hours.

10/17/2017 Pumphouse B5; Received a phone call that a communication line was hit about 20 feet west of the pumphouse. Upon inspection, the conduit was broken and 4 blue data cables were visible through the break. A hand hole vault will have to be installed to protect the break. Since pumphouses B9 and B10 continue to operate in "Auto", likely the cables were not damaged. There was starter chatter in the B9 control cabinet. Disconnected the data cable between B9 and B10 and the chatter ceased.

Down time: None.

10/18/2017Treatment System; Replaced the airflow pressure gauge on the blower inlet for tower3.

Down time: None.

- 10/18/2017 Pumphouse B4; The RPZ was leaking. Turned the pump off and relieved pressure to the RPZ. Restarted the pump and observed normal operation. Down time: None.
- 10/26-31/2017 Pumphouse SC2; The pump can no longer overcome the forcemain back pressure. Turned the pump off and contacted Thein Well to jet the well screen and replace the pump and motor. Thein Well continued to work on the well when the month ended. Down time: 141.5 hours.
- 10/27/2017 Treatment System; The flow meter for pump 4 no longer totals correctly. Removed the flow meter from Pump 4 and switched it with the flow meter from Pump 3. Observed normal operation. Down time: None.
- 10/27/2017 Treatment System; The ECV for pump 4 would not close on command. Installed a new solenoid valve in the control piping. Cycled the valve three times and observed normal operation. Down time: None.

10/30/2017	Pumphouse B6; The heater no longer provides heat. Opened the breaker to the heater and installed a temporary electric heater in the pumphouse to provide heat. Down time: None.
November 2017	
11/2/2017	Pumphouse SC2; The pump and motor Thein Well installed did not meet performance specifications. Thein Well installed a new pump and motor. Following installation, turned the pump on and observed normal operation. Down time: 43 hours.
11/5/2017	Daylight savings time; Adjusted the spreadsheet accordingly to reflect the addition of one hour. Down time: None.
11/13/2017	Pumphouses B3, B4 and B8; Turned the pumphouses off to repair the water distribution systems at the tops of Towers 3 and 4. Following the repairs, turned the pumps on and observed normal operation. Down time: 20.5 hours at each well.
11/15-16/2017	Pumphouse B13; The flow rate was below the target flow rate. Pulled the lift system, jetted the well screen and replaced the pump and motor with new. Turned the pump on and observed normal operation. Down time: 24 hours.
11/16/2017	Pumphouse SC1; During the daily inspection, the pump was off. At B11, the control switch was in the "Off" position. Turned the switch to "Auto" and inspected SC1. At SC1, the pump was operating normally. Down time: 22 hours.
11/17-18/2017	Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.
	Down time: P1 for 9 hours: P12 P4 P6 and P9 for 6.5 hours: P0 SC1 and SC5 for 7.5

Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.

- 11/18/2017 Pumphouse B8; The RPZ was leaking. Contacted Jayhawk Mechanical and they repaired the RPZ backflow preventer. Down time: 14 hours.
- 11/19-22/2017 Pumphouse B6; The RPZ backflow preventer was leaking. Contacted Jayhawk Mechanical and they repaired the RPZ backflow preventer. Restarted the pump and observed normal operation. Down time: 73.5 hours.
- 11/20/2017 Pumphouses B9 and B10; Call from McCrossan that they hit a communication cable near pumphouse B10. The wires were severed and stretched. Contacted Preferred Electric and they assessed the damage to prepare an estimate for repairs. Down time: None.
- 11/23-24/2017 Pumphouse B1; The motor starter was tripped each day. Reset the starter and the turned the pump on. Observed normal operation each day. Down time: 30.5 hours.
- 11/27-30/2017 Pumphouse B1; The motor starter was tripped. Contacted Preferred Electric. Troubleshooting showed a blown submersible pump motor. Contacted Thein Well and they replaced the pump and motor. Started the pump and observed normal operation.

Down time: 95.5 hours.

December 2017

12/1-2/2017 Pumphouse B1; The motor starter was tripped. Contacted Preferred Electric. Troubleshooting indicated a blown submersible pump motor. Contacted Thein Well and they replaced the pump and motor. Started the pump and observed normal operation.

Down time: 23.5 hours.

- 12/3/2017 Pumphouses B5 and B8; Increased the ECV back pressure to slow the flow rate. Down time: None.
- 12/6/2017 Pumphouse B8; Increased the ECV back pressure to slow the flow rate. Down time: None.
- 12/18/2017 Pumphouse B1; Turned the pump off to conduct testing on the pump to determine why the pump is not producing at design capacity. Following testing, turned the pump on and observed normal operation.
 Down time: 4.5 hours.
- 12/25/2017 Christmas Day; The inspection was not performed. Meter readings were estimated. Down time: None.

12/30-31/2017	Pumphouse SC2; The RPZ was leaking at a fast rate. Turned the pump off and contacted Jayhawk Mechanical for repairs. They were not able to respond until the beginning of next week. Down time: None.
January 2018	
1/1/2018	The daily inspection was not performed due to the New Year's Day holiday. Meter readings were estimated. Down time: None.
1/1-4 /2018	Pumphouse SC2; The RPZ was leaking. Turned the pump off and contacted Jayhawk Mechanical. They repaired the RPZ. Restarted the pump and observed normal operation. Down time: 93.5 hours.
1/2/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was running normally. Down time: 11.5 hours.
1/8/2018	Pumphouse B5, The light was flashing on the wellfield panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was running normally. Down time: 14 hours.
1/11/2018	Pumphouse SC2; The flow meter was totaling too quickly. Removed and replaced the flow meter with one from inventory. Observed normal operation. Down time: None.
1/12/2018	Pumphouse SC1; The building temperature was about 35 degrees on arrival. Cycled the thermostat and the heater came on normally. Checked the building after completion of the daily inspection. The building was warm and the heater was working normally. Down time: None.
1/15/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights relit normally. At the pumphouses, the pumps were running normally. Down time: 16 hours at B5 and 20 hours at B6.
1/16/2018	Pumphouse B5; The light was flashing on the well field panel. Drove to the pumphouse and found the "Low Level" light was on. Troubleshooting indicated a blown water level control board. Changed out the water level control board with one from inventory and restarted the pump. The pump restarted normally however the ECV no longer held pressure. Changed out the pilot, exercised the control valves flushed the control piping and reset the pilot. Observed normal operation. Down time: 13.5 hours.

February 2018 2/9/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was working normally. Down time: 8 hours.
2/13/2018	Pumphouses B3 and B4; The lights were flashing on the well field panel. Reset the PLC and the lights came on steady. At the pumphouses, the pumps were running normally. Down time: 18 hours at B3 and 19 hours at B4.
2/14/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was running normally. Down time: 1.5 hours.
2/15/2018	Pumphouse B6; The light was flashing on the PLC. Turned the pumphouses off and turned the PLC to off. Allowed the PLC to remain off for 5 minutes and then restarted the PLC. The well field and treatment system restarted normally. Performed the daily inspection and the TGRS was operating normally. Down time: 6 hours.
2/15/2018	Pumphouse B8; The pump was off and the I/O adapter light was flashing on the control card. Reset the I/O adapter card and restarted the pump. The pump restarted normally. Down time: None.
2/19/2018	Pumphouses SC1, SC2 and SC5; The lights were out on the well field panel. At the pumphouses, the pumps were off and the lights were dim. A fuse was found to be open on a power pole near the old Lind electrical sub-station. Contacted Xcel Energy and they responded. They installed a new fuse. Restarted the pumps and observed normal operation. Down time: None. Xcel Energy responded right away.
2/19/2018	Pumphouse B4; The RPZ was leaking. Turned the pump off and closed the ECV. Started the pump and opened the ECV slowly. The RPZ did not leak and normal operation was observed. Down time: None.
2/20/2018	Pumphouses SC1, SC2 and SC5; The lights were off on the well field panel. At the pumphouses, the pumps were off and the lights were dim. The same fuse was found to be open on the power pole near the old Lind electrical sub-station. Contacted Xcel Energy again and they responded. They thoroughly inspected the power lines and found a location near SC4 where the wind could possibly blow a loose power line into the power pole. They repaired the wire and installed new fuses at a number of locations. Restarted the pumps and observed normal operation.
2/20/2018	pumphouses, the pumps were off and the lights were dim. The same fuse was found to be open on the power pole near the old Lind electrical sub-station. Contacted Xcel Energy again and they responded. They thoroughly inspected the power lines and found a location near SC4 where the wind could possibly blow a loose power line into the power pole. They repaired the wire and installed new fuses at a number of

2/21/2018	Pumphouse SC2; The ECV had substantial iron bacteria build-up which was blocking flow. Removed the ECV and installed a flow meter in its place. Turned the pump on and the pump restarted normally. The flow rate increased approximately 40%.
	Down time: 19.5 hours.
March 2018	
3/6/2018	Treatment System and Well Field; There was a snow storm last night. DK Concrete was on site and plowed snow. Down time: None.
3/6/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the ECV was wide open. Replaced the strainer screen, flushed the control piping and exercised the control valves on the control piping. Reset the pilot pressure and the valve operated normally. Down time: 25.5 hours.
3/7/2018	Pumphouse B5; The light was flashing again on the well field panel. Turned the TGRS off and performed the daily inspection. Upon return the treatment system, restarted the TGRS. Observed normal operation. The limit switch was not triggered at B5. Lowered the doughnut on the valve stem. Closed the ECV and the pump turned off normally. Restarted the pump and the pump started normally.
	Down time: 15 hours.
3/12/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 12 hours.
3/13/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 2 hours.
3/19/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 11.5 hours.
3/20/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 16.5 hours.
3/21/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 4.5 hours.

- 3/22/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 13 hours.
- 3/24-27/2018 Pumphouses B1, B13 and B6; The lights were flashing on the well field panel. Reset the PLC and the light for B6 came back on steady. However the lights for B1 and B13 turned off. At pumphouse B6, the pump was operating normally. At pumphouses B1 and B13, the pumps were rapidly turning on and off. Turned the controls at B1 from AUTO to HAND and the pump ran normally. Turned the controls at B13 from AUTO to HAND and the pump continued to rapidly turn on and off. Troubleshooting indicated a bad I/O adapter card at B13. Replaced the I/O adapter card with one from inventory and the B13 pump restarted normally. Switched the controls at B1 from HAND to AUTO and the pump operated normally.

Down time: 10.5 hours at B1, 26 hours at B6 hours and 78 hours at B13.

- 3/28/2018 Pumphouse B9; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was operating normally. Down time: 8.5 hours.
- 3/29/2018 Pumphouse B9; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was operating normally. Down time: 21.5 hours.
- 3/30/2018 Pumphouse B9; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was operating normally. Down time: 23.5 hours.

April 2018

- 4/5/2018Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the
light came back on steady. At the pumphouse, the pump was operating normally.
Down time: 20 hours.
- Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the
PLC and the lights came back on steady. At the pumphouses, the pumps were
operating normally.4/9/2018
 - Down time: 18 hours at B5 and 22.5 hours at B6.
- 4/12/2018 Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was operating normally. Down time: None.
- Pumphouses B1, B13, B3 and B4; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal
 4/11/2018 operation of each flow meter following the work. Down time: 2.5 hours at B1.

4/12/2018	Pumphouses B5, B6, SC2 and SC5; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work. Down time: 2.5 hours at B5, 3.5 hours at B6, 3 hours at SC2 and 4 hours at SC5.
4/14-16/2018	Pumphouse B5; Each day the light was flashing on the well field panel. Reset the PLC each day and the light came back on steady. At the pumphouse, the pump was operating normally. Down time: 61.5 hours.
4/15/2018	Treatment system and well field; The inspection was not performed due to a snow storm. Meter readings were estimated. Down time: None.
4/16/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally. Down time: 23.5 hours at B5 and 6.5 hours at B6.
4/17/2018	Pumphouse B4; Performed troubleshooting to determine the reason for B5/B6 intermittent operation. Turned B4 off to swap out communication modules. Down time: 3 hours.
4/18/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally. Down time: 2.5 hours at B5 and 2 hours at B6.
4/18-24/2018	Pumphouse B13; Each day the light was flashing on the well field panel. Reset the PLC each day and the light would stay on steady. At the pumphouse, the pump would be operating normally. The next day the light would be flashing on the well field panel again. Changed out the I/O adapter module in B13 and restarted the B13 pump. The pump restarted normally. Down time: 101.5 hours.
4/19/2018	Treatment System; ECV 4 would not close on command. Turned off pumphouses B9 and B6 to minimize well field cycling. Rebuilt the pilot and replaced the solenoid valve. Following the work, turned Pump 4 on and actuated ECV 4. ECV 4 did not close properly. Additional troubleshooting necessary. Down time: 2 hours at B6 and 2 hours at B9.
4/27-30/2018	Pumphouse B13; Each day the light was flashing on the well field. Reset the PLC each day and each day the light came back on steady. At the pumphouse the pump was operating normally. Additional troubleshooting necessary. Down time: 76 hours.

4/28-29/2018 Pumphouse SC5; The flow rate slowed overnight. Removed and cleaned the strainer screen and reset the pilot. Restarted the pump and observed normal operation. Down time: 9 hours.

May 2018

5/1-4/2018 Pumphouse B13; Each day the light was flashing on the well field. Reset the PLC each day and each day the light came back on steady. At the pumphouse the pump was operating normally. Troubleshooting eventually revealed a bad I/O adapter card at pumphouse B1. Replaced the I/O adapter card at B1 and restarted pump in B13. The pump restarted and observed normal operation.

Down time: 55 hours.

5/1/2018 Treatment System; ECV 4 will not close on command. Installed a new seal kit in the pilot and replaced the solenoid body but the valve did not close. Likely a new 10-inch valve seal kit will need to be installed for the valve to close. Scheduled the installation.

Down time: None.

- 5/2/2018 Pumphouse B1; The RPZ was venting out the overflow. Closed the ECV, turned the pump off and exercised the RPZ blow off valves. Turned the pump back on and the RPZ no longer leaked. Observed normal operation. Down time: None.
- 5/3/2018 Pumphouse B4; In an effort to troubleshoot the B13 communication issue, turned the pump in B4 off and swapped communication cards with pumphouses B1 and B13. Following the troubleshooting work, turned B4 on and observed normal operation.

Down time: 2 hours.

- 5/4/2018 Pumphouse SC5; The RPZ was venting out the overflow. Closed the ECV, turned the pump off and exercised the RPZ blow off valves. Turned the pump back on and the RPZ leaked. Contacted Jayhawk Mechanical and they repaired the leak. Turned the pump back on and observed normal operation. Down time: 4 hours.
- 5/5-7/2018 Pumphouses SC1, SC2 and SC5; A storm knocked out power to the wells and a fuse is open on the power pole near the old Lind electrical substation. Contacted Xcel Energy and they replaced the fuse and worked on other areas of the power line. Turned the pumps back on and observed normal operation. Down time: 36.5 hours at each pumphouse.
- 5/8/2018 Pumphouse Roads; Contracted JL Weber to repair the snow melt erosion ruts to the site roads. Down time: None.

5/8-9/2018	Treatment System and Well Field; Preferred Electric performed the annual electrical inspection. Down time: None.
5/10/2018	Pumphouses B1, B3, B4, B5, B6, B8, B9, SC2 and SC5; Jayhawk Mechanical performed the annual RPZ electrical inspection. Down time: None.
5/10/2018	Pumphouse B9; Following the electrical inspection at B9, the electrician forgot to turn the pump back on. The pump was turned back on the following day during the daily inspection when the oversight was noticed. Down time: 25 hours.
5/14/2018	Pumphouse SC5; The flow rate slowed overnight due to build-up of manganese in the ECV control piping. Flushed the control piping and cleaned and replaced the strainer screen. Reset the pilot to operating flow rate and pressure and observed normal operation. Down time: 1.5 hours.
5/15/2018	Pumphouses B4, B5, B6, B8 and B9; The lights were not lit on the well field panel. Upon inspection, there was a blown fuse holder on the power pole near pumphouse B5. Contacted Xcel Energy and they repaired the fuse holder. Turned the pumps on and observed normal operation.
	Down time: 20 hours at B4, B5, B6 and B9; 17.5 hours at B8.
5/15/2018	Pumphouses B3 and B5; Increased their flow rates to maximum. Down time: None.
5/25/2018	Pumphouse B5; The light was flashing on the well field panel. There was a storm last night that possibly knocked out communication between the pumphouse and the PLC in Building 116. At the pumphouse, reset the starter and turned the switch to Auto. The pump turned on and normal operation was observed. Down time: 20.5 hours.
5/28/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was operating normally. Down time: 19.5 hours.
5/29/2018	Treatment System and Well Field; Call from Time Communications - "TGRS Fail". At the Site, found the power was out to the treatment system. Found a fusible link open on a power pole west of Building 116. Contacted Xcel Energy and they responded. They replaced the fuse and found a dead raccoon near the power pole which was likely the cause of the power outage.
	Down time: 1.5 hours at B4 and B9; 2 hours at B1; 2.5 hours at B13 and SC5; 14.5 hours at B6 and 20 hours at B5.

5/30/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel; At the pumphouses, the low level lights were on. Cycled power to the control panels and turned the pumps on to Auto. The pumps restarted normally. Down time: 9 hours at B6 and 19.5 hours at B5.
June 2018 6/1/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. At the pumphouses, the low level lights were on. Installed a new output card in the B6 control panel. Restarted the pumps and observed normal operation. Down time: 18.5 hours at B5 and 14.5 hours at B6
6/5/2018	Pumphouse B1; The starter was chattering. Turned the pump and control panel off, opened the 480 volt disconnect and removed the output card. Reinstalled the same output card, closed the disconnect and turned the control panel back on. Turned the switch to auto and the pump restarted normally. Down time: None.
6/7/2018	Pumphouse B9; The flow meter stopped totaling. Replaced the flow meter with a new one from inventory. Restarted the pump and observed normal operation. Meter reading was estimated for the day. Down time: None.
6/8/2018	Treatment System; ECV 4 no longer closes. Turned the pumps in B5 and B9 to off to stop the well field from cycling with only Pump 3 in the treatment system operating. Replaced the valve seals in ECV 4. Turned Pump 4 on and cycled ECV 4. Observed normal operation. Turned the pumps in B5 and B9 back on for normal operation.
	Down time: 7 hours at B5 and 7.5 hours at B9.
6/15/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 14 hours.
6/16/2018	Pumphouse B5; The light was flashing on the well field panel. At the pumphouse, the low level light was on. Installed a new output card and restarted the pump. The pump restarted normally. Down time: 21 hours.
6/18/2018	Pumphouse B5; The light was flashing on the well field panel. At the pumphouse, cycled power to the control panel and then turned the pump to auto. The pump started and normal operation was observed. Down time: 21 hours.
6/27-30/2018	Pumphouse SC2; The flow meter was no longer totaling and the pump was not producing pressure. Turned the pump off. Likely the pump inlet is packed with iron bacteria.

	Down time: 98.5 hours.
6/29/2018	Pumphouse B5; The light was flashing on the well field panel. At the pumphouse, the low level light was on. Cycled power to the control panel and turned the pump to auto. The pump started normally. Down time: 18 hours.
July 2018 7/4/2018	The daily inspection was not performed due to the Independence Day holiday. Meter readings were estimated. Down time: None.
7/8/2018	Treatment System - The auto dialer backup battery was low. Replaced the auto dialer battery. Down time: None.
7/8/2018	Pumphouses B3 and B4 - The lights were flashing on the well field panel. Reset the PLC but the lights continued flashing. At the pumphouses, the pumps would not run in auto. Turned the pumps on in hand and observed normal operation. Additional troubleshooting necessary. Down time: 15.5 hours at B3 and 21 hours at B4.
7/10/2018	Pumphouse B5 - The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 20.5 hours.
7/11/2018	Pumphouse B5 - The light was flashing on the well field panel. Reset the PLC but the light continued flashing. At the pumphouse, the pump would not run in auto. Turned the pump on in hand and observed normal operation. Additional troubleshooting necessary. Down time: 14 hours.
7/11-14/2018	Pumphouse B1 - Turned the pump off to redevelop the well and install a larger capacity pump. Following the work, turned the pump on and the pump started normally. Down time: 69 hours.
7/13/2018	Pumphouse B13 - The light was flashing on the well field panel. At the pumphouse, the starter would chatter when the pump was turned on in auto. Replaced the output card and restarted the pump. Observed normal operation. Down time: 1 hour.
7/13/2018	Pumphouse SC5 - The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was running normally. Down time: 1.5 hours.

7/13/2018 Pumphouse B5 - The starter would chatter when the pump was turned on in auto. Turned the pump off to perform troubleshooting work. Installed new input, output and I/O adapter cards in the chassis and restarted the pump in auto. Observed normal operation.

Down time: 3.5 hours.

7/13-14/2018 Pumphouse B4 - Performed troubleshooting on the control system. Restarted the pump in auto and the pump restarted normally. The following day, the light was flashing on the well field panel. Turned the pump back on in hand. Additional troubleshooting necessary.

Down time: 16 hours.

- 7/16-20/2018 Pumphouse B5 Turned the pump off to redevelop the well and install a larger capacity pump. Following the work, turned the pump on and the pump restarted normally. Down time: 95.5 hours.
- 7/25/2018 Pumphouse B4 Contracted Egan Company to performed troubleshooting on the control system. Restarted the pump in auto and the pump restarted normally. The following day, the light was flashing on the well field panel. Turned the pump back on in hand. Additional troubleshooting necessary.

Down time: 21.5 hours.

- 7/26/2018 Pumphouse B5 The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 20 hours.
- 7/26-27/2018 Pumphouse B4 The RPZ was leaking out the vent pipe. Attempted to stop the leak but to no avail. Turned the pump off. The following day, restarted the pump and the RPZ did not leak. Observed normal operation. Down time: 18.5 hours.
- 7/28/2018 Pumphouse B9 The ECV would not close. Turned the pump off to remove portions of the ECV control piping and remove sand build-up. Following the work, restarted the pump and observed normal operation.

Down time: 1.5 hours.

- 7/30/2018 Pumphouse B1 The light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was operating normally. Down time: 5.5 hours.
- 7/31/2018 Pumphouse B5 The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 12.5 hours.

7/31/2018	Pumphouses B13, B4, B6, B9, SC1 and SC5 - Turned the TGRS to perform troubleshooting on the PLC controls due to the B3, B4, B5 communication issues with the PLC. Found a bad common ground terminal on the B1 through B6 data line protector. Replaced the data line protector and restarted the TGRS. The communication issues continued and additional troubleshooting necessary. Down time: 3 hours at B13, B9, SC1 and SC5. B4 and B6 had 1.5 hours of down time.
August 2018 8/1/2018	Pumphouse B3 and B4. B4 is in Hand and B3 is in Auto. Reset chassis jumpers in an attempt to troubleshoot the problem. Restarted the pumps but chatter and eventual shut down at B4 occurred. Also, swapped out control cards from B8/B11 but that had no effect either. Additional troubleshooting necessary. B4 in Hand and B3 in Auto.
	Down time: None.
8/2/2018	Pumphouse B3. The light was flashing on the well field panel. At the pumphouse the low level light was on and the pump was off. Turned the control to hand and the pump restarted normally. Down time: 17.5 hours.
8/2/2018	Pumphouse B4. Changed out the LCS 10 water level control board, the data line protector, the ECV operating solenoid valve and the control chassis. Attempted to restart the pump in Auto but starter chatter and eventual shutdown occurred. Additional troubleshooting necessary.
	Down time: 3 hours.
8/3/2018	Pumphouse B1. Preferred Electric installed 120 volt line surge protector in control panel. Down time: None.
8/4/2018	Pumphouses B1, B13, B5 and SC1. The lights were flashing on the well field panel. There was a thunderstorm last night which most likely caused the wells to turn off. Reset the well field panel and except for SC1, the lights came back on steady. At pumphouse SC1 the operating light on the control panel was off. Reset the control panel but the light remained off. It shares controls with B11. At B11, the active light on the I/O adapter card was off. Cycled power to the control cards and the light came back on steady. Returned to SC1 and reset the controls. SC1 restarted normally. At B1, B13 and B5 the pumps were operating normally.
	Down time: 6.5 hours at B1, 17 hours at B13, 15 hours at B5 and 17.5 hours at SC1.
8/5/2018	Pumphouses B4, B6 and B9. The lights were flashing on the well field panel. At the pumphouses, cycled power to the control panels and reset the starters. Turned the pumps on in Auto and observed normal operation. Down time: 10 hours at B4 and B9. 9 hours at B6.

8/7/2018	Pumphouse B5. The light was flashing on the well field panel. At the pumphouse, cycled power to the controls and reset the starter. Restarted the pump in auto but starter chatter occurred. Turned the pump on in hand. Normal operation observed. Down time: 12 hours.
8/7/2018	Pumphouses B1-B6. The wells are pumping in hand because they will only temporarily work in auto. Additional troubleshooting is necessary. Down time: None.
8/8-9/2018	Pumphouses B1-B6. Inspected communication line hand holes south of the treatment center. Some of the communication wires were found to be damaged. Possibly damaged by an animal. Scheduled additional troubleshooting. Down time: None.
8/10-13/2018	Pumphouses B1-B6. The wells would not run in Auto and were switched to operating in hand. Turned B13 off rather than risk lowering the pumping water level to the pump intake. Rang out and identified communication lines south of building 116. Temporarily spliced lines together and B1-B6 pumps all worked in Auto. Normal operation observed.
	Down time: 3 hours each at B1, B4, B9, SC1 and SC5. 73.5 hours at B13.
8/16/2018	Pumphouses B1-B6. Turned the pumps off so Preferred Electric could professionally splice the communication wires in the hand hole south of Building 116. Following the work, turned the pumps on in Auto and all pumps operated normally.
	Down time: 1.5 hours at B1 and 1.5 hours at B4.
8/18-19/2018	Pumphouses B4, B5, B6, B8 and B9. There was no power to the pumphouses and a portion of the electrical wiring on the transformers on the power pole behind B5 was damaged. Contacted Xcel Energy and they responded and repaired the problem. Turned the pumps on for normal service and normal operation was observed.
	Down time: 13.5 hours at B4 and B9, 2 hours at B5, 10 hours at B6 and 3 hours at B8.
8/25/2018	Pumphouse B5. The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was running normally. Down time: 26.5 hours.
8/25/2018	Pumphouse SC5. The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was running normally. Down time: 5 hours.

8/30/2018 Pumphouses B5 and B9. The gland packing around the pump shafts for Pumps 3 and 4 in the treatment center was leaking. Turned pumps B5 and B9 off to negate well field cycling. Removed and replaced the gland packing and tightened the packing followers. Turned the pumps back on and turned the pumps in B5 and B9 back on. Observed normal operation.

Down time: 5 hours at B9.

September 2018

- 9/3/2018 Labor Day holiday. No inspection was performed. Meter readings were estimated. Down time: None.
- 9/5-6/2018 Pumphouse B9. The pump would not run in Auto without starter chatter and eventual pump shutdown. Turned the pump on in hand and scheduled further troubleshooting.

Down time: 19 hours.

9/8-11/2018 Pumphouse SC1. The meter stopped totaling. Removed the flow meter, cleaned it with acid and replaced the flow meter. Turned the pump on and the meter totaled normally. Meter readings were estimated.

Down time: 19 hours.

9/13/2018 Pumphouse B9. The pump would not run in Auto without starter chatter and eventual pump shutdown. Traced communication wire from the treatment center south and inspected the wire in the hand holes. Located a potential bad splice and respliced the wire. Also, turned the TGRS off and replaced the B9/B10 scanner module and replaced the I/O adapter in the pumphouse control panel. Turned the pump on in Auto and observed normal operation.

Down time: 1.5 hours.

9/13/2018 Pumphouse SC5. The RPZ was venting out the overflow. Turned the pump off, flushed piping and exercised valves. Turned the pump on and opened and closed the ECV to actuate RPZ spring valve. The RPZ stopped leaking and normal operation was observed.

Down time: None.

- 9/13-14/2018 Pumphouse B4. The RPZ was leaking out the overflow. Exercised valves and flushed piping. Opened and closed the ECV several times but the RPZ continued to vent. Turned the pump off and scheduled Jayhawk Mechanical for maintenance. Down time: 23 hours.
- 9/14/2018 Pumphouse SC5. The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was running normally. Down time: 8 hours.

- 9/17/2018 Pumphouse SC1. The pump was not running. Located a blown fuse on the power pole near B11. Contacted Xcel Energy and they repaired the problem. Turned SC1 on and observed normal operation. Down time: 20 hours.
- 9/21/2018 Pumphouse B9. The light was flashing on the well field panel. Reset the PLC and the light went out. At the pumphouse, the pump was off. Cycled power to the pump and control system and restarted the pump. Significant chatter from the starter and then the pump turned off. Turned the pump on in hand. Additional troubleshooting necessary.

Down time:

9/22-26/2018 Pumphouses B 4, B5, B6, B8, B9. The pumps are off. Located an open fusible link on the power pole adjacent to pumphouse B5. Contacted Xcel Energy. They found that one of the three legs inside the CT cabinet had corroded and failed. Contacted Preferred Electric and they installed new wiring in the CT cabinet. Xcel Energy returned to the site, connected the new wires and energized the lines. Turned the pumps on and observed normal operation.

Down time: 126 hours at B6 and B9, 127 hours at B4, 124 hours at B5 and 125 hours at B8.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Pumphouse B1

11/17-18/2017	Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.
	Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.
11/23-24/2017	Pumphouse B1; The motor starter was tripped each day. Reset the starter and the turned the pump on. Observed normal operation each day. Down time: 30.5 hours.
11/27-30/2017	Pumphouse B1; The motor starter was tripped. Contacted Preferred Electric. Troubleshooting showed a blown submersible pump motor. Contacted Thein Well and they replaced the pump and motor. Started the pump and observed normal operation.
	Down time: 95.5 hours.
12/1-2/2017	Pumphouse B1; The motor starter was tripped. Contacted Preferred Electric. Troubleshooting indicated a blown submersible pump motor. Contacted Thein Well and they replaced the pump and motor. Started the pump and observed normal operation.
	Down time: 23.5 hours.
12/18/2017	Pumphouse B1; Turned the pump off to conduct testing on the pump to determine why the pump is not producing at design capacity. Following testing, turned the pump on and observed normal operation.

- Down time: 4.5 hours.
- 3/24-27/2018 Pumphouses B1, B13 and B6; The lights were flashing on the well field panel. Reset the PLC and the light for B6 came back on steady. However the lights for B1 and B13 turned off. At pumphouse B6, the pump was operating normally. At pumphouses B1 and B13, the pumps were rapidly turning on and off. Turned the controls at B1 from AUTO to HAND and the pump ran normally. Turned the controls at B13 from AUTO to HAND and the pump continued to rapidly turn on and off. Troubleshooting indicated a bad I/O adapter card at B13. Replaced the I/O adapter card with one from inventory and the B13 pump restarted normally. Switched the controls at B1 from HAND to AUTO and the pump operated normally.

Down time: 10.5 hours at B1, 26 hours at B6 hours and 78 hours at B13.

- 4/11/2018 Pumphouses B1, B13, B3 and B4; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work. Down time: 2.5 hours at B1.
- 5/2/2018 Pumphouse B1; The RPZ was venting out the overflow. Closed the ECV, turned the pump off and exercised the RPZ blow off valves. Turned the pump back on and the RPZ no longer leaked. Observed normal operation. Down time: None.
- 5/10/2018 Pumphouses B1, B3, B4, B5, B6, B8, B9, SC2 and SC5; Jayhawk Mechanical performed the annual RPZ electrical inspection. Down time: None.
- 6/5/2018 Pumphouse B1; The starter was chattering. Turned the pump and control panel off, opened the 480 volt disconnect and removed the output card. Reinstalled the same output card, closed the disconnect and turned the control panel back on. Turned the switch to auto and the pump restarted normally. Down time: None.
- 7/11-14/2018 Pumphouse B1 Turned the pump off to redevelop the well and install a larger capacity pump. Following the work, turned the pump on and the pump started normally. Down time: 69 hours.
- 7/30/2018 Pumphouse B1 The light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was operating normally. Down time: 5.5 hours.
- 8/3/2018 Pumphouse B1. Preferred Electric installed 120 volt line surge protector in control panel.
 Down time: None.

8/4/2018	Pumphouses B1, B13, B5 and SC1. The lights were flashing on the well field panel. There was a thunderstorm last night which most likely caused the wells to turn off. Reset the well field panel and except for SC1, the lights came back on steady. At pumphouse SC1 the operating light on the control panel was off. Reset the control panel but the light remained off. It shares controls with B11. At B11, the active light on the I/O adapter card was off. Cycled power to the control cards and the light came back on steady. Returned to SC1 and reset the controls. SC1 restarted normally. At B1, B13 and B5 the pumps were operating normally. Down time: 6.5 hours at B1, 17 hours at B13, 15 hours at B5 and 17.5 hours at SC1.
8/7/2018	Pumphouses B1-B6. The wells are pumping in hand because they will only temporarily work in auto. Additional troubleshooting is necessary. Down time: None.
8/8-9/2018	Pumphouses B1-B6. Inspected communication line hand holes south of the treatment center. Some of the communication wires were found to be damaged. Possibly damaged by an animal. Scheduled additional troubleshooting. Down time: None.
8/10-13/2018	Pumphouses B1-B6. The wells would not run in Auto and were switched to operating in hand. Turned B13 off rather than risk lowering the pumping water level to the pump intake. Ran out and identified communication lines south of building 116. Temporarily spliced lines together and B1-B6 pumps all worked in Auto. Normal operation observed.
	Down time: 3 hours each at B1, B4, B9, SC1 and SC5. 73.5 hours at B13.
8/16/2018	Pumphouses B1-B6. Turned the pumps off so Preferred Electric could professionally splice the communication wires in the hand hole south of Building 116. Following the work, turned the pumps on in Auto and all pumps operated normally.
	Down time: 1.5 hours at B1 and 1.5 hours at B4.
	Pumphouse B3
11/13/2017	Pumphouses B3, B4 and B8; Turned the pumphouses off to repair the water distribution systems at the tops of Towers 3 and 4. Following the repairs, turned the pumps on and observed normal operation. Down time: 20.5 hours at each well.
2/13/2018	Pumphouses B3 and B4; The lights were flashing on the well field panel. Reset the PLC and the lights came on steady. At the pumphouses, the pumps were running normally. Down time: 18 hours at B3 and 19 hours at B4.
_ / /	
5/15/2018	Pumphouses B3 and B5; Increased their flow rates to maximum. Down time: None.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

7/8/2018 Pumphouses B3 and B4 - The lights were flashing on the well field panel. Reset the PLC but the lights continued flashing. At the pumphouses, the pumps would not run in auto. Turned the pumps on in hand and observed normal operation. Additional troubleshooting necessary. Down time: 15.5 hours at B3 and 21 hours at B4. 8/1/2018 Pumphouse B3 and B4. B4 is in Hand and B3 is in Auto. Reset chasis jumpers in an attempt to troubleshoot the problem. Restarted the pumps but chatter and eventual shut down at B4 occurred. Also, swapped out control cards from B8/B11 but that had no effect either. Additional troubleshooting necessary. B4 in Hand and B3 in Auto. Down time: None. 8/2/2018 Pumphouse B3. The light was flashing on the well field panel. At the pumphouse the low level light was on and the pump was off. Turned the control to hand and the pump restarted normally. Down time: 17.5 hours. Pumphouse B4 10/18/2017 Pumphouse B4; The RPZ was leaking. Turned the pump off and relieved pressure to the RPZ. Restarted the pump and observed normal operation. Down time: None. 11/13/2017 Pumphouses B3, B4 and B8; Turned the pumphouses off to repair the water distribution systems at the tops of Towers 3 and 4. Following the repairs, turned the pumps on and observed normal operation. Down time: 20.5 hours at each well. 11/17-18/2017 Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally. Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours. 2/13/2018 Pumphouses B3 and B4; The lights were flashing on the well field panel. Reset the PLC and the lights came on steady. At the pumphouses, the pumps were running

normally.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Down time: 18 hours at B3 and 19 hours at B4.

- 2/19/2018 Pumphouse B4; The RPZ was leaking. Turned the pump off and closed the ECV. Started the pump and opened the ECV slowly. The RPZ did not leak and normal operation was observed. Down time: None.
- 4/11/2018 Pumphouses B1, B13, B3 and B4; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work. Down time: 2.5 hours at B1.
- 4/17/2018 Pumphouse B4; Performed troubleshooting to determine the reason for B5/B6 intermittent operation. Turned B4 off to swap out communication modules. Down time: 3 hours.
- 5/3/2018 Pumphouse B4; In an effort to troubleshoot the B13 communication issue, turned the pump in B4 off and swapped communication cards with pumphouses B1 and B13. Following the troubleshooting work, turned B4 on and observed normal operation.

Down time: 2 hours.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 5/10/2018 Pumphouses B1, B3, B4, B5, B6, B8, B9, SC2 and SC5; Jayhawk Mechanical performed the annual RPZ electrical inspection. Down time: None.
- 5/15/2018 Pumphouses B4, B5, B6, B8 and B9; The lights were not lit on the well field panel. Upon inspection, there was a blown fuse holder on the power pole near pumphouse B5. Contacted Xcel Energy and they repaired the fuse holder. Turned the pumps on and observed normal operation.

Down time: 20 hours at B4, B5, B6 and B9; 17.5 hours at B8.

7/8/2018 Pumphouses B3 and B4 - The lights were flashing on the well field panel. Reset the PLC but the lights continued flashing. At the pumphouses, the pumps would not run in auto. Turned the pumps on in hand and observed normal operation. Additional troubleshooting necessary.

Down time: 15.5 hours at B3 and 21 hours at B4.

7/13-14/2018 Pumphouse B4 - Performed troubleshooting on the control system. Restarted the pump in auto and the pump restarted normally. The following day, the light was flashing on the well field panel. Turned the pump back on in hand. Additional troubleshooting necessary.

Down time: 16 hours.

- 7/25/2018 Pumphouse B4 Contracted Egan Company to performed troubleshooting on the control system. Restarted the pump in auto and the pump restarted normally. The following day, the light was flashing on the well field panel. Turned the pump back on in hand. Additional troubleshooting necessary.
 Down time: 21.5 hours.
- 7/26-27/2018 Pumphouse B4 The RPZ was leaking out the vent pipe. Attempted to stop the leak but to no avail. Turned the pump off. The following day, restarted the pump and the RPZ did not leak. Observed normal operation. Down time: 18.5 hours.
- 8/1/2018 Pumphouse B3 and B4. B4 is in Hand and B3 is in Auto. Reset chasis jumpers in an attempt to troubleshoot the problem. Restarted the pumps but chatter and eventual shut down at B4 occurred. Also, swapped out control cards from B8/B11 but that had no effect either. Additional troubleshooting necessary. B4 in Hand and B3 in Auto.

Down time: None.

8/2/2018 Pumphouse B4. Changed out the LCS 10 water level control board, the data line protector, the ECV operating solenoid valve and the control chasis. Attempted to restart the pump in Auto but starter chatter and eventual shutdown occurred. Additional troubleshooting necessary.

Down time: 3 hours.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

8/5/2018 Pumphouses B4, B6 and B9. The lights were flashing on the well field panel. At the pumphouses, cycled power to the control panels and reset the starters. Turned the pumps on in Auto and observed normal operation. Down time: 10 hours at B4 and B9. 9 hours at B6. 8/7/2018 Pumphouses B1-B6. The wells are pumping in hand because they will only temporarily work in auto. Additional troubleshooting is necessary. Down time: None. 8/8-9/2018 Pumphouses B1-B6. Inspected communication line hand holes south of the treatment center. Some of the communication wires were found to be damaged. Possibly damaged by an animal. Scheduled additional troubleshooting. Down time: None. 8/10-13/2018 Pumphouses B1-B6. The wells would not run in Auto and were switched to operating in hand. Turned B13 off rather than risk lowering the pumping water level to the pump intake. Ran out and identified communication lines south of building 116. Temporarily spliced lines together and B1-B6 pumps all worked in Auto. Normal operation observed. Down time: 3 hours each at B1, B4, B9, SC1 and SC5. 73.5 hours at B13. 8/16/2018 Pumphouses B1-B6. Turned the pumps off so Preferred Electric could professionally splice the communication wires in the hand hole south of Building 116. Following the work, turned the pumps on in Auto and all pumps operated normally. Down time: 1.5 hours at B1 and 1.5 hours at B4. 8/18-19/2018 Pumphouses B4, B5, B6, B8 and B9. There was no power to the pumphouses and a portion of the electrical wiring on the transformers on the power pole behind B5 was damaged. Contacted Xcel Energy and they responded and repaired the problem. Turned the pumps on for normal service and normal operation was observed.

Down time: 13.5 hours at B4 and B9, 2 hours at B5, 10 hours at B6 and 3 hours at B8.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 9/13-14/2018 Pumphouse B4. The RPZ was leaking out the overflow. Exercised valves and flushed piping. Opened and closed the ECV several times but the RPZ continued to vent. Turned the pump off and scheduled Jayhawk Mechanical for maintenance. Down time: 23 hours.
- 9/22-26/2018 Pumphouses B 4, B5, B6, B8, B9. The pumps are off. Located an open fusible link on the power pole adjacent to pumphouse B5. Contacted Xcel Energy. They found that one of the three legs inside the CT cabinet had corroded and failed. Contacted Preferred Electric and they installed new wiring in the CT cabinet. Xcel Energy returned to the site, connected the new wires and energized the lines. Turned the pumps on and observed normal operation.

Down time: 126 hours at B6 and B9, 127 hours at B4, 124 hours at B5 and 125 hours at B8.

Pumphouse B5

10/17/2017 Pumphouse B5; Received a phone call that a communication line was hit about 20 feet west of the pumphouse. Upon inspection, the conduit was broken and 4 blue data cables were visible through the break. A hand hole vault will have to be installed to protect the break. Since pumphouses B9 and B10 continue to operate in "Auto", likely the cables were not damaged. There was starter chatter in the B9 control cabinet. Disconnected the data cable between B9 and B10 and the chatter ceased.

Down time: None.

11/17-18/2017 Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.

Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5

- 12/3/2017 Pumphouses B5 and B8; Increased the ECV back pressure to slow the flow rate. Down time: None.
- 1/2/2018Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the
light relit normally. At the pumphouse, the pump was running normally.
Down time: 11.5 hours.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

1/8/2018 Pumphouse B5, The light was flashing on the wellfield panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was running normally. Down time: 14 hours. 1/15/2018 Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights relit normally. At the pumphouses, the pumps were running normally. Down time: 16 hours at B5 and 20 hours at B6. 1/16/2018 Pumphouse B5; The light was flashing on the well field panel. Drove to the pumphouse and found the "Low Level" light was on. Troubleshooting indicated a blown water level control board. Changed out the water level control board with one from inventory and restarted the pump. The pump restarted normally however the ECV no longer held pressure. Changed out the pilot, exercised the control valves flushed the control piping and reset the pilot. Observed normal operation. Down time: 13.5 hours. 2/9/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was working normally. Down time: 8 hours. 3/6/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the ECV was wide open. Replaced the strainer screen, flushed the control piping and exercised the control valves on the control piping. Reset the pilot pressure and the valve operated normally. Down time: 25.5 hours. 3/7/2018 Pumphouse B5; The light was flashing again on the well field panel. Turned the TGRS off and performed the daily inspection. Upon return the treatment system, restarted the TGRS. Observed normal operation. The limit switch was not triggered at B5. Lowered the doughnut on the valve stem. Closed the ECV and the pump turned off normally. Restarted the pump and the pump started normally. Down time: 15 hours. 3/12/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 12 hours. 3/19/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 11.5 hours. 3/22/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 13 hours.

4/9/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally.			
	Down time: 18 hours at B5 and 22.5 hours at B6.			
4/12/2018	Pumphouses B5, B6, SC2 and SC5; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work.			
	Down time: 2.5 hours at B5, 3.5 hours at B6, 3 hours at SC2 and 4 hours at SC5.			
4/14-16/2018	Pumphouse B5; Each day the light was flashing on the well field panel. Reset the PLC each day and the light came back on steady. At the pumphouse, the pump was operating normally.			
	Down time: 61.5 hours.			
4/16/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally.			
	Down time: 23.5 hours at B5 and 6.5 hours at B6.			
4/18/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally.			
	Down time: 2.5 hours at B5 and 2 hours at B6.			
5/25/2018	Pumphouse B5; The light was flashing on the well field panel. There was a storm last night that possibly knocked out communication between the pumphouse and the PLC in Building 116. At the pumphouse, reset the starter and turned the switch to Auto. The pump turned on and normal operation was observed.			
	Down time: 20.5 hours.			
5/28/2018	Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was operating normally. Down time: 19.5 hours.			
5/30/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel; At the pumphouses, the low level lights were on. Cycled power to the control panels and turned the pumps on to Auto. The pumps restarted normally.			
	Down time: 9 hours at B6 and 19.5 hours at B5.			
6/1/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. At the pumphouses, the low level lights were on. Installed a new output card in the B6 control panel. Restarted the pumps and observed normal operation. Down time: 18.5 hours at B5 and 14.5 hours at B6			

- 6/15/2018 Pumphouse B5; The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 14 hours. 6/16/2018 Pumphouse B5; The light was flashing on the well field panel. At the pumphouse, the low level light was on. Installed a new output card and restarted the pump. The pump restarted normally. Down time: 21 hours. 6/18/2018 Pumphouse B5; The light was flashing on the well field panel. At the pumphouse, cycled power to the control panel and then turned the pump to auto. The pump started and normal operation was observed. Down time: 21 hours. 6/29/2018 Pumphouse B5; The light was flashing on the well field panel. At the pumphouse, the low level light was on. Cycled power to the control panel and turned the pump to auto. The pump started normally. Down time: 18 hours. 7/10/2018 Pumphouse B5 - The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 20.5 hours. 7/11/2018 Pumphouse B5 - The light was flashing on the well field panel. Reset the PLC but the light continued flashing. At the pumphouse, the pump would not run in auto. Turned the pump on in hand and observed normal operation. Additional troubleshooting necessary. Down time: 14 hours. 7/13/2018 Pumphouse B5 - The starter would chatter when the pump was turned on in auto. Turned the pump off to perform troubleshooting work. Installed new input, output and I/O adapter cards in the chasis and restarted the pump in auto. Observed normal operation. Down time: 3.5 hours. 7/16-20/2018 Pumphouse B5 - Turned the pump off to redevelop the well and install a larger
- 7/16-20/2018 Pumphouse B5 Turned the pump off to redevelop the well and install a larger capacity pump. Following the work, turned the pump on and the pump restarted normally.
 Down time: 95.5 hours.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 7/26/2018 Pumphouse B5 The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 20 hours.
- 7/31/2018 Pumphouse B5 The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was operating normally. Down time: 12.5 hours.
- 8/7/2018 Pumphouse B5. The light was flashing on the well field panel. At the pumphouse, cycled power to the controls and reset the starter. Restarted the pump in auto but starter chatter occurred. Turned the pump on in hand. Normal operation observed. Down time: 12 hours.
- 8/25/2018 Pumphouse B5. The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was running normally. Down time: 26.5 hours.
- 8/30/2018 Pumphouses B5 and B9. The gland packing around the pump shafts for Pumps 3 and 4 in the treatment center was leaking. Turned pumps B5 and B9 off to negate well field cycling. Removed and replaced the gland packing and tightened the packing followers. Turned the pumps back on and turned the pumps in B5 and B9 back on. Observed normal operation.

Down time: 5 hours at B9.

9/22-26/2018 Pumphouses B 4, B5, B6, B8, B9. The pumps are off. Located an open fusible link on the power pole adjacent to pumphouse B5. Contacted Xcel Energy. They found that one of the three legs inside the CT cabinet had corroded and failed. Contacted Preferred Electric and they installed new wiring in the CT cabinet. Xcel Energy returned to the site, connected the new wires and energized the lines. Turned the pumps on and observed normal operation.

Down time: 126 hours at B6 and B9, 127 hours at B4, 124 hours at B5 and 125 hours at B8.

Pumphouse B6

10/30/2017 Pumphouse B6; The heater no longer provides heat. Opened the breaker to the heater and installed a temporary electric heater in the pumphouse to provide heat. Down time: None.

11/19-22/2017	Pumphouse B6; The RPZ backflow preventer was leaking. Contacted Jayhawk Mechanical and they repaired the RPZ backflow preventer. Restarted the pump and observed normal operation. Down time: 73.5 hours.			
	Down time. 73.5 hours.			
2/14/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was running normally. Down time: 1.5 hours.			
2/15/2018	Pumphouse B6; The light was flashing on the PLC. Turned the pumphouses off and turned the PLC to off. Allowed the PLC to remain off for 5 minutes and then restarted the PLC. The well field and treatment system restarted normally. Performed the daily inspection and the TGRS was operating normally.			
	Down time: 6 hours.			
3/13/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 2 hours.			
3/20/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 16.5 hours.			
3/21/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was running normally. Down time: 4.5 hours.			
4/5/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was operating normally. Down time: 20 hours.			
4/9/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally.			
	Down time: 18 hours at B5 and 22.5 hours at B6.			
4/12/2018	Pumphouse B6; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was operating normally. Down time: None.			
4/12/2018	Pumphouses B5, B6, SC2 and SC5; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work. Down time: 2.5 hours at B5, 3.5 hours at B6, 3 hours at SC2 and 4 hours at SC5.			

4/16/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally.			
	Down time: 23.5 hours at B5 and 6.5 hours at B6.			
4/18/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. Reset the PLC and the lights came back on steady. At the pumphouses, the pumps were operating normally.			
	Down time: 2.5 hours at B5 and 2 hours at B6.			
5/10/2018	Pumphouses B1, B3, B4, B5, B6, B8, B9, SC2 and SC5; Jayhawk Mechanical performed the annual RPZ electrical inspection. Down time: None.			
5/15/2018	Pumphouses B4, B5, B6, B8 and B9; The lights were not lit on the well field panel. Upon inspection, there was a blown fuse holder on the power pole near pumphouse B5. Contacted Xcel Energy and they repaired the fuse holder. Turned the pumps on and observed normal operation.			
	Down time: 20 hours at B4, B5, B6 and B9; 17.5 hours at B8.			
5/30/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel; At the pumphouses, the low level lights were on. Cycled power to the control panels and turned the pumps on to Auto. The pumps restarted normally.			
	Down time: 9 hours at B6 and 19.5 hours at B5.			
6/1/2018	Pumphouses B5 and B6; The lights were flashing on the well field panel. At the pumphouses, the low level lights were on. Installed a new output card in the B6 control panel. Restarted the pumps and observed normal operation.			
	Down time: 18.5 hours at B5 and 14.5 hours at B6			
7/31/2018	Pumphouses B13, B4, B6, B9, SC1 and SC5 - Turned the TGRS to perform troubleshooting on the PLC controls due to the B3, B4, B5 communication issues with the PLC. Found a bad common ground terminal on the B1 through B6 data line protector. Replaced the data line protector and restarted the TGRS. The communication issues continued and additional troubleshooting necessary.			
	Down time: 3 hours at B13, B9, SC1 and SC5. B4 and B6 had 1.5 hours of down time.			
8/5/2018	Pumphouses B4, B6 and B9. The lights were flashing on the well field panel. At the pumphouses, cycled power to the control panels and reset the starters. Turned the pumps on in Auto and observed normal operation.			
	Down time: 10 hours at B4 and B9. 9 hours at B6.			
8/7/2018	Pumphouses B1-B6. The wells are pumping in hand because they will only temporarily work in auto. Additional troubleshooting is necessary. Down time: None.			

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 8/8-9/2018 Pumphouses B1-B6. Inspected communication line hand holes south of the treatment center. Some of the communication wires were found to be damaged. Possibly damaged by an animal. Scheduled additional troubleshooting. Down time: None.
- 8/10-13/2018 Pumphouses B1-B6. The wells would not run in Auto and were switched to operating in hand. Turned B13 off rather than risk lowering the pumping water level to the pump intake. Ran out and identified communication lines south of building 116. Temporarily spliced lines together and B1-B6 pumps all worked in Auto. Normal operation observed.

Down time: 3 hours each at B1, B4, B9, SC1 and SC5. 73.5 hours at B13.

8/16/2018 Pumphouses B1-B6. Turned the pumps off so Preferred Electric could professionally splice the communication wires in the hand hole south of Building 116. Following the work, turned the pumps on in Auto and all pumps operated normally.

Down time: 1.5 hours at B1 and 1.5 hours at B4.

8/18-19/2018 Pumphouses B4, B5, B6, B8 and B9. There was no power to the pumphouses and a portion of the electrical wiring on the transformers on the power pole behind B5 was damaged. Contacted Xcel Energy and they responded and repaired the problem. Turned the pumps on for normal service and normal operation was observed.

Down time: 13.5 hours at B4 and B9, 2 hours at B5, 10 hours at B6 and 3 hours at B8.

9/22-26/2018 Pumphouses B 4, B5, B6, B8, B9. The pumps are off. Located an open fusible link on the power pole adjacent to pumphouse B5. Contacted Xcel Energy. They found that one of the three legs inside the CT cabinet had corroded and failed. Contacted Preferred Electric and they installed new wiring in the CT cabinet. Xcel Energy returned to the site, connected the new wires and energized the lines. Turned the pumps on and observed normal operation.

Down time: 126 hours at B6 and B9, 127 hours at B4, 124 hours at B5 and 125 hours at B8.

Pumphouse B8

11/13/2017 Pumphouses B3, B4 and B8; Turned the pumphouses off to repair the water distribution systems at the tops of Towers 3 and 4. Following the repairs, turned the pumps on and observed normal operation.
 Down time: 20.5 hours at each well.

11/17-18/2017	Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally. Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.
11/18/2017	Pumphouse B8; The RPZ was leaking. Contacted Jayhawk Mechanical and they repaired the RPZ backflow preventer. Down time: 14 hours.
12/3/2017	Pumphouses B5 and B8; Increased the ECV back pressure to slow the flow rate. Down time: None.
12/6/2017	Pumphouse B8; Increased the ECV back pressure to slow the flow rate. Down time: None.
2/15/2018	Pumphouse B8; The pump was off and the I/O adapter light was flashing on the control card. Reset the I/O adapter card and restarted the pump. The pump restarted normally. Down time: None.
5/10/2018	Pumphouses B1, B3, B4, B5, B6, B8, B9, SC2 and SC5; Jayhawk Mechanical performed the annual RPZ electrical inspection. Down time: None.
5/15/2018	Pumphouses B4, B5, B6, B8 and B9; The lights were not lit on the well field panel. Upon inspection, there was a blown fuse holder on the power pole near pumphouse B5. Contacted Xcel Energy and they repaired the fuse holder. Turned the pumps on and observed normal operation. Down time: 20 hours at B4, B5, B6 and B9; 17.5 hours at B8.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

9/22-26/2018 Pumphouses B 4, B5, B6, B8, B9. The pumps are off. Located an open fusible link on the power pole adjacent to pumphouse B5. Contacted Xcel Energy. They found that one of the three legs inside the CT cabinet had corroded and failed. Contacted Preferred Electric and they installed new wiring in the CT cabinet. Xcel Energy returned to the site, connected the new wires and energized the lines. Turned the pumps on and observed normal operation.

Down time: 126 hours at B6 and B9, 127 hours at B4, 124 hours at B5 and 125 hours at B8.

Pumphouse B9

- 10/2-3/2017 Pumphouse B9; Each day, the light was flashing on the well field panel. Reset the PLC and the light relit normally. At the pumphouse, the pump was running normally. There is a contractor working in the vicinity of the B5 pumphouse. Down time: 31.5 hours.
- 11/17-18/2017 Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.

Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.

- 11/20/2017 Pumphouses B9 and B10; Call from McCrossan that they hit a communication cable near pumphouse B10. The wires were severed and stretched. Contacted Preferred Electric and they assessed the damage to prepare an estimate for repairs. Down time: None.
- 3/28/2018 Pumphouse B9; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was operating normally. Down time: 8.5 hours.
- 3/29/2018 Pumphouse B9; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was operating normally. Down time: 21.5 hours.
- 3/30/2018 Pumphouse B9; The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse the pump was operating normally. Down time: 23.5 hours.

5/10/2018	Pumphouses B1, B3, B4, B5, B6, B8, B9, SC2 and SC5; Jayhawk Mechanical performed the annual RPZ electrical inspection. Down time: None.
5/10/2018	Pumphouse B9; Following the electrical inspection at B9, the electrician forgot to turn the pump back on. The pump was turned back on the following day during the daily inspection when the oversight was noticed. Down time: 25 hours.
5/15/2018	Pumphouses B4, B5, B6, B8 and B9; The lights were not lit on the well field panel. Upon inspection, there was a blown fuse holder on the power pole near pumphouse B5. Contacted Xcel Energy and they repaired the fuse holder. Turned the pumps on and observed normal operation.
	Down time: 20 hours at B4, B5, B6 and B9; 17.5 hours at B8.
6/7/2018	Pumphouse B9; The flow meter stopped totaling. Replaced the flow meter with a new one from inventory. Restarted the pump and observed normal operation. Meter reading was estimated for the day. Down time: None.
7/28/2018	Pumphouse B9 - The ECV would not close. Turned the pump off to remove portions of the ECV control piping and remove sand build-up. Following the work, restarted the pump and observed normal operation. Down time: 1.5 hours.
7/31/2018	Pumphouses B13, B4, B6, B9, SC1 and SC5 - Turned the TGRS to perform troubleshooting on the PLC controls due to the B3, B4, B5 communication issues with the PLC. Found a bad common ground terminal on the B1 through B6 data line protector. Replaced the data line protector and restarted the TGRS. The communication issues continued and additional troubleshooting necessary.
	Down time: 3 hours at B13, B9, SC1 and SC5. B4 and B6 had 1.5 hours of down time.
8/5/2018	Pumphouses B4, B6 and B9. The lights were flashing on the well field panel. At the pumphouses, cycled power to the control panels and reset the starters. Turned the pumps on in Auto and observed normal operation. Down time: 10 hours at B4 and B9. 9 hours at B6.
8/10-13/2018	Pumphouses B1-B6. The wells would not run in Auto and were switched to operating in hand. Turned B13 off rather than risk lowering the pumping water level to the pump intake. Ran out and identified communication lines south of building 116. Temporarily spliced lines together and B1-B6 pumps all worked in Auto. Normal operation observed.
	Down time: 3 hours each at B1, B4, B9, SC1 and SC5. 73.5 hours at B13.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

8/18-19/2018 Pumphouses B4, B5, B6, B8 and B9. There was no power to the pumphouses and a portion of the electrical wiring on the transformers on the power pole behind B5 was damaged. Contacted Xcel Energy and they responded and repaired the problem. Turned the pumps on for normal service and normal operation was observed.

Down time: 13.5 hours at B4 and B9, 2 hours at B5, 10 hours at B6 and 3 hours at B8.

8/30/2018 Pumphouses B5 and B9. The gland packing around the pump shafts for Pumps 3 and 4 in the treatment center was leaking. Turned pumps B5 and B9 off to negate well field cycling. Removed and replaced the gland packing and tightened the packing followers. Turned the pumps back on and turned the pumps in B5 and B9 back on. Observed normal operation.

Down time: 5 hours at B9.

9/5-6/2018 Pumphouse B9. The pump would not run in Auto without starter chatter and eventual pump shutdown. Turned the pump on in hand and scheduled further troubleshooting.

Down time: 19 hours.

9/13/2018 Pumphouse B9. The pump would not run in Auto without starter chatter and eventual pump shutdown. Traced communication wire from the treatment center south and inspected the wire in the hand holes. Located a potential bad splice and respliced the wire. Also, turned the TGRS off and replaced the B9/B10 scanner module and replaced the I/O adapter in the pumphouse control panel. Turned the pump on in Auto and observed normal operation.

Down time: 1.5 hours.

9/21/2018 Pumphouse B9. The light was flashing on the well field panel. Reset the PLC and the light went out. At the pumphouse, the pump was off. Cycled power to the pump and control system and restarted the pump. Significant chatter from the starter and then the pump turned off. Turned the pump on in hand. Additional troubleshooting necessary.

Down time:

9/22-26/2018 Pumphouses B 4, B5, B6, B8, B9. The pumps are off. Located an open fusible link on the power pole adjacent to pumphouse B5. Contacted Xcel Energy. They found that one of the three legs inside the CT cabinet had corroded and failed. Contacted Preferred Electric and they installed new wiring in the CT cabinet. Xcel Energy returned to the site, connected the new wires and energized the lines. Turned the pumps on and observed normal operation.

Down time: 126 hours at B6 and B9, 127 hours at B4, 124 hours at B5 and 125 hours at B8.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Pumphouse B13

- 11/15-16/2017 Pumphouse B13; The flow rate was below the target flow rate. Pulled the lift system, jetted the well screen and replaced the pump and motor with new. Turned the pump on and observed normal operation. Down time: 24 hours.
- 4/11/2018 Pumphouses B1, B13, B3 and B4; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work.
 Down time: 2.5 hours at B1.
- 4/18-24/2018 Pumphouse B13; Each day the light was flashing on the well field panel. Reset the PLC each day and the light would stay on steady. At the pumphouse, the pump would be operating normally. The next day the light would be flashing on the well field panel again. Changed out the I/O adapter module in B13 and restarted the B13 pump. The pump restarted normally.

Down time: 101.5 hours.

- 4/27-30/2018 Pumphouse B13; Each day the light was flashing on the well field. Reset the PLC each day and each day the light came back on steady. At the pumphouse the pump was operating normally. Additional troubleshooting necessary.
 Down time: 76 hours.
- 5/1-4/2018 Pumphouse B13; Each day the light was flashing on the well field. Reset the PLC each day and each day the light came back on steady. At the pumphouse the pump was operating normally. Troubleshooting eventually revealed a bad I/O adapter card at pumphouse B1. Replaced the I/O adapter card at B1 and restarted pump in B13. The pump restarted and observed normal operation.

Down time: 55 hours.

- 7/13/2018 Pumphouse B13 The light was flashing on the well field panel. At the pumphouse, the starter would chatter when the pump was turned on in auto. Replaced the output card and restarted the pump. Observed normal operation. Down time: 1 hour.
- 8/4/2018 Pumphouses B1, B13, B5 and SC1. The lights were flashing on the well field panel. There was a thunderstorm last night which most likely caused the wells to turn off. Reset the well field panel and except for SC1, the lights came back on steady. At pumphouse SC1 the operating light on the control panel was off. Reset the control panel but the light remained off. It shares controls with B11. At B11, the active light on the I/O adapter card was off. Cycled power to the control cards and the light came back on steady. Returned to SC1 and reset the controls. SC1 restarted normally. At B1, B13 and B5 the pumps were operating normally.

Down time: 6.5 hours at B1, 17 hours at B13, 15 hours at B5 and 17.5 hours at SC1.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

Pumphouse SC1

- 11/16/2017 Pumphouse SC1; During the daily inspection, the pump was off. At B11, the control switch was in the "Off" position. Turned the switch to "Auto" and inspected SC1. At SC1, the pump was operating normally. Down time: 22 hours.
- 11/17-18/2017 Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.

Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.

1/12/2018 Pumphouse SC1; The building temperature was about 35 degrees on arrival. Cycled the thermostat and the heater came on normally. Checked the building after completion of the daily inspection. The building was warm and the heater was working normally.

Down time: None.

2/19/2018 Pumphouses SC1, SC2 and SC5; The lights were out on the well field panel. At the pumphouses, the pumps were off and the lights were dim. A fuse was found to be open on a power pole near the old Lind electrical sub-station. Contacted Xcel Energy and they responded. They installed a new fuse. Restarted the pumps and observed normal operation.

Down time: None. Xcel Energy responded right away.

2/20/2018 Pumphouses SC1, SC2 and SC5; The lights were off on the well field panel. At the pumphouses, the pumps were off and the lights were dim. The same fuse was found to be open on the power pole near the old Lind electrical sub-station. Contacted Xcel Energy again and they responded. They thoroughly inspected the power lines and found a location near SC4 where the wind could possibly blow a loose power line into the power pole. They repaired the wire and installed new fuses at a number of locations. Restarted the pumps and observed normal operation.

Down time: 19 hours at SC1, 18.5 hours at SC2 and 16.5 hours at SC5.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 5/5-7/2018 Pumphouses SC1, SC2 and SC5; A storm knocked out power to the wells and a fuse is open on the power pole near the old Lind electrical substation. Contacted Xcel Energy and they replaced the fuse and worked on other areas of the power line. Turned the pumps back on and observed normal operation.
 - Down time: 36.5 hours at each pumphouse.
- 7/31/2018 Pumphouses B13, B4, B6, B9, SC1 and SC5 Turned the TGRS to perform troubleshooting on the PLC controls due to the B3, B4, B5 communication issues with the PLC. Found a bad common ground terminal on the B1 through B6 data line protector. Replaced the data line protector and restarted the TGRS. The communication issues continued and additional troubleshooting necessary.

Down time: 3 hours at B13, B9, SC1 and SC5. B4 and B6 had 1.5 hours of down time.

8/4/2018 Pumphouses B1, B13, B5 and SC1. The lights were flashing on the well field panel. There was a thunderstorm last night which most likely caused the wells to turn off. Reset the well field panel and except for SC1, the lights came back on steady. At pumphouse SC1 the operating light on the control panel was off. Reset the control panel but the light remained off. It shares controls with B11. At B11, the active light on the I/O adapter card was off. Cycled power to the control cards and the light came back on steady. Returned to SC1 and reset the controls. SC1 restarted normally. At B1, B13 and B5 the pumps were operating normally.

Down time: 6.5 hours at B1, 17 hours at B13, 15 hours at B5 and 17.5 hours at SC1.

- 9/8-11/2018 Pumphouse SC1. The meter stopped totaling. Removed the flow meter, cleaned it with acid and replaced the flow meter. Turned the pump on and the meter totaled normally. Meter readings were estimated. Down time: 19 hours.
- 9/17/2018 Pumphouse SC1. The pump was not running. Located a blown fuse on the power pole near B11. Contacted Xcel Energy and they repaired the problem. Turned SC1 on and observed normal operation. Down time: 20 hours.

Pumphouse SC2

10/7-12/2017 Pumphouse SC2; The RPZ was leaking. Attempted to stop the leak but the leak continued. Turned the pump and breaker to off and closed the gate valve. Jayhawk Mechanical repaired the RPZ. Turned the pump on but the flow rate would not register on the water meter. Removed and cleaned the water meter. The meter shows flow now but only at 2 gallons per minute. Daily meter readings were estimated to reflect 2 gallons per minute.

Down time: 122.5 hours.

10/26-31/2017 Pumphouse SC2; The pump can no longer overcome the forcemain back pressure. Turned the pump off and contacted Thein Well to jet the well screen and replace the pump and motor. Thein Well continued to work on the well when the month ended. Down time: 141.5 hours.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 11/2/2017 Pumphouse SC2; The pump and motor Thein Well installed did not meet performance specifications. Thein Well installed a new pump and motor. Following installation, turned the pump on and observed normal operation. Down time: 43 hours.
- 11/17-18/2017 Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.

Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.

- 12/30-31/2017 Pumphouse SC2; The RPZ was leaking at a fast rate. Turned the pump off and contacted Jayhawk Mechanical for repairs. They were not able to respond until the beginning of next week. Down time: None.
- 1/1-4 /2018 Pumphouse SC2; The RPZ was leaking. Turned the pump off and contacted Jayhawk Mechanical. They repaired the RPZ. Restarted the pump and observed normal operation.
 Down time: 93.5 hours.
- 1/11/2018 Pumphouse SC2; The flow meter was totaling too quickly. Removed and replaced the flow meter with one from inventory. Observed normal operation. Down time: None.
- 2/19/2018 Pumphouses SC1, SC2 and SC5; The lights were out on the well field panel. At the pumphouses, the pumps were off and the lights were dim. A fuse was found to be open on a power pole near the old Lind electrical sub-station. Contacted Xcel Energy and they responded. They installed a new fuse. Restarted the pumps and observed normal operation.

Down time: None. Xcel Energy responded right away.

2/20/2018 Pumphouses SC1, SC2 and SC5; The lights were off on the well field panel. At the pumphouses, the pumps were off and the lights were dim. The same fuse was found to be open on the power pole near the old Lind electrical sub-station. Contacted Xcel Energy again and they responded. They thoroughly inspected the power lines and found a location near SC4 where the wind could possibly blow a loose power line into the power pole. They repaired the wire and installed new fuses at a number of locations. Restarted the pumps and observed normal operation.

Down time: 19 hours at SC1, 18.5 hours at SC2 and 16.5 hours at SC5.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

2/21/2018 Pumphouse SC2; The ECV had substantial iron bacteria build-up which was blocking flow. Removed the ECV and installed a flow meter in its place. Turned the pump on and the pump restarted normally. The flow rate increased approximately 40%.

Down time: 19.5 hours.

- 4/12/2018 Pumphouses B5, B6, SC2 and SC5; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work.
 Down time: 2.5 hours at B5, 3.5 hours at B6, 3 hours at SC2 and 4 hours at SC5.
- 5/5-7/2018 Pumphouses SC1, SC2 and SC5; A storm knocked out power to the wells and a fuse is open on the power pole near the old Lind electrical substation. Contacted Xcel Energy and they replaced the fuse and worked on other areas of the power line. Turned the pumps back on and observed normal operation.

Down time: 36.5 hours at each pumphouse.

6/27-30/2018 Pumphouse SC2; The flow meter was no longer totaling and the pump was not producing pressure. Turned the pump off. Likely the pump inlet is packed with iron bacteria.

Down time: 98.5 hours.

Pumphouse SC5

11/17-18/2017 Pumphouses B1, B13, B3, B4, B5, B6, B8, B9, SC1, SC2, SC5; Call from Time Communication that the TGRS was down. At the site, there was a power outage that ceased power to the entire site. Contacted Xcel Energy and they found a blown fuse in the power pole across County Road 10 from Scherer Brothers Lumber. They installed a new fuse and power was restored power. However, the power outage blew the two electric heaters in the treatment center and the electric heater in pumphouse SC1. It also shorted the electrical wire in the conduit between the breaker box and Pump 3 in the treatment center. Contacted Preferred Electric and they repaired the heaters and also replaced the electrical wire to Pump 3. Also, Blower 3 in the treatment center would not start. Replaced a blown fuse and restarted Blower 3. Blower 3 restarted normally.

Down time: B1 for 8 hours; B13, B4, B6 and B8 for 6.5 hours; B9, SC1 and SC5 for 7.5 hours; B3 and B5 for 4 hours; SC2 for 3 hours.

2/20/2018 Pumphouses SC1, SC2 and SC5; The lights were off on the well field panel. At the pumphouses, the pumps were off and the lights were dim. The same fuse was found to be open on the power pole near the old Lind electrical sub-station. Contacted Xcel Energy again and they responded. They thoroughly inspected the power lines and found a location near SC4 where the wind could possibly blow a loose power line into the power pole. They repaired the wire and installed new fuses at a number of locations. Restarted the pumps and observed normal operation.

Down time: 19 hours at SC1, 18.5 hours at SC2 and 16.5 hours at SC5.

Maintenance Activities By Location Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

- 4/12/2018 Pumphouses B5, B6, SC2 and SC5; The cold water flow meters required maintenance. Removed them, cleaned them with acid and reinstalled them. Observed normal operation of each flow meter following the work.
 Down time: 2.5 hours at B5, 3.5 hours at B6, 3 hours at SC2 and 4 hours at SC5.
- 4/28-29/2018 Pumphouse SC5; The flow rate slowed overnight. Removed and cleaned the strainer screen and reset the pilot. Restarted the pump and observed normal operation. Down time: 9 hours.
- 5/4/2018 Pumphouse SC5; The RPZ was venting out the overflow. Closed the ECV, turned the pump off and exercised the RPZ blow off valves. Turned the pump back on and the RPZ leaked. Contacted Jayhawk Mechanical and they repaired the leak. Turned the pump back on and observed normal operation.

Down time: 4 hours.

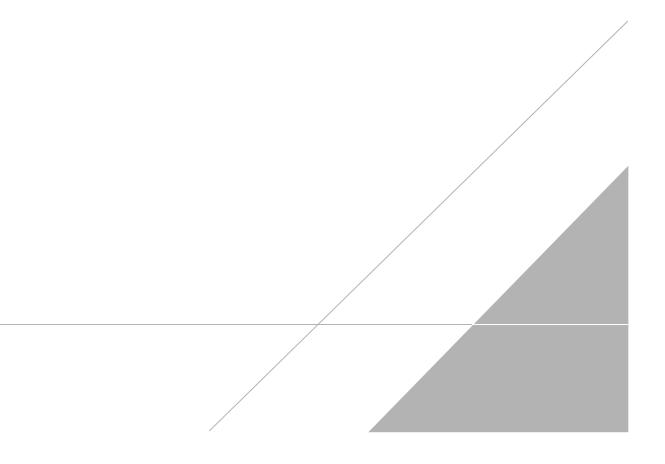
5/5-7/2018 Pumphouses SC1, SC2 and SC5; A storm knocked out power to the wells and a fuse is open on the power pole near the old Lind electrical substation. Contacted Xcel Energy and they replaced the fuse and worked on other areas of the power line. Turned the pumps back on and observed normal operation.

Down time: 36.5 hours at each pumphouse.

5/14/2018 Pumphouse SC5; The flow rate slowed overnight due to build-up of manganese in the ECV control piping. Flushed the control piping and cleaned and replaced the strainer screen. Reset the pilot to operating flow rate and pressure and observed normal operation.

Down time: 1.5 hours.

7/13/2018 Pumphouse SC5 - The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was running normally. Down time: 1.5 hours.


7/31/2018	Pumphouses B13, B4, B6, B9, SC1 and SC5 - Turned the TGRS to perform troubleshooting on the PLC controls due to the B3, B4, B5 communication issues with the PLC. Found a bad common ground terminal on the B1 through B6 data line protector. Replaced the data line protector and restarted the TGRS. The communication issues continued and additional troubleshooting necessary. Down time: 3 hours at B13, B9, SC1 and SC5. B4 and B6 had 1.5 hours of down time.				
8/25/2018	Pumphouse SC5. The light was flashing on the well field panel. Reset the PLC and the light came back on steady. At the pumphouse, the pump was running normally. Down time: 5 hours.				
9/13/2018	Pumphouse SC5. The RPZ was venting out the overflow. Turned the pump off, flushed piping and exercised valves. Turned the pump on and opened and closed the ECV to actuate RPZ spring valve. The RPZ stopped leaking and normal operation was observed. Down time: None.				
9/14/2018	Pumphouse SC5. The light was flashing on the well field panel. Reset the PLC and the light came on steady. At the pumphouse, the pump was running normally. Down time: 8 hours.				
	Treatment System				
10/18/2017	Treatment System; Replaced the airflow pressure gauge on the blower inlet for tower 3. Down time: None.				
10/27/2017	Treatment System; The flow meter for pump 4 no longer totals correctly. Removed the flow meter from Pump 4 and switched it with the flow meter from Pump 3. Observed normal operation. Down time: None.				
10/27/2017	Treatment System; The ECV for pump 4 would not close on command. Installed a new solenoid valve in the control piping. Cycled the valve three times and observed normal operation. Down time: None.				
11/5/2017	Daylight savings time; Adjusted the spreadsheet accordingly to reflect the addition of one hour. Down time: None.				
12/25/2017	Christmas Day; The inspection was not performed. Meter readings were estimated. Down time: None.				
1/1/2018	The daily inspection was not performed due to the New Year's Day holiday. Meter readings were estimated. Down time: None.				

3/6/2018	Treatment System and Well Field; There was a snow storm last night. DK Concrete was on site and plowed snow. Down time: None.
4/15/2018	Treatment system and well field; The inspection was not performed due to a snow storm. Meter readings were estimated. Down time: None.
4/19/2018	Treatment System; ECV 4 would not close on command. Turned off pumphouses B9 and B6 to minimize well field cycling. Rebuilt the pilot and replaced the solenoid valve. Following the work, turned Pump 4 on and actuated ECV 4. ECV 4 did not close properly. Additional troubleshooting necessary. Down time: 2 hours at B6 and 2 hours at B9.
5/1/2018	Treatment System; ECV 4 will not close on command. Installed a new seal kit in the pilot and replaced the solenoid body but the valve did not close. Likely a new 10-inch valve seal kit will need to be installed for the valve to close. Scheduled the installation.
	Down time: None.
5/8/2018	Pumphouse Roads; Contracted JL Weber to repair the snow melt erosion ruts to the site roads. Down time: None.
5/8-9/2018	Treatment System and Well Field; Preferred Electric performed the annual electrical inspection. Down time: None.
5/29/2018	Treatment System and Well Field; Call from Time Communications - "TGRS Fail". At the Site, found the power was out to the treatment system. Found a fusible link open on a power pole west of Building 116. Contacted Xcel Energy and they responded. They replaced the fuse and found a dead raccoon near the power pole which was likely the cause of the power outage.
	Down time: 1.5 hours at B4 and B9; 2 hours at B1; 2.5 hours at B13 and SC5; 14.5 hours at B6 and 20 hours at B5.
6/8/2018	Treatment System; ECV 4 no longer closes. Turned the pumps in B5 and B9 to off to stop the well field from cycling with only Pump 3 in the treatment system operating. Replaced the valve seals in ECV 4. Turned Pump 4 on and cycled ECV 4. Observed normal operation. Turned the pumps in B5 and B9 back on for normal operation.
	Down time: 7 hours at B5 and 7.5 hours at B9.
7/4/2018	The daily inspection was not performed due to the Independence Day holiday. Meter readings were estimated. Down time: None.

7/8/2018	Treatment System - The auto dialer backup battery was low. Replaced the auto dialer battery. Down time: None.
9/3/2018	Labor Day holiday. No inspection was performed. Meter readings were estimated. Down time: None.

APPENDIX H

TGRS Chemical Data

Well	Date		
	B1		
03F302	11/17/87	1040	-
03F302	12/15/87	2120	
03F302	01/12/88	2580	
03F302	04/28/88	2900	
03F302	07/19/88	4300	
03F302	10/21/88	4800	
03F302	03/16/89	5800	
03F302	04/20/89	4500	
03F302	07/19/89	2700	
03F302	10/24/89	2300	
03F302	01/18/90	2700	2100 duplicate
03F302	05/08/90	1300	
03F302	07/13/90	1900	1900 duplicate
03F302	12/19/90	1800	
03F302	03/19/91	1300	
03F302	06/05/91	1400	
03F302	09/05/91	1300	
03F302	12/04/91	1200	
03F302	03/06/92	1200	
03F302	06/05/92	890	
03F302	09/01/92	1100	
03F302	03/03/93	840	
03F302	09/15/93	860	
03F302	03/03/94	430	
03F302	09/07/94	520	
03F302	03/14/95	400	390 duplicate
03F302	09/11/95	360	360 duplicate
03F302	06/06/96	320	
03F302	09/10/96	380	
03F302	12/11/96	340	
03F302	06/09/97	260	
03F302	12/08/97	250	240 duplicate
03F302	06/08/98	250	
03F302	12/02/98	300	
03F302	06/17/99	310	
03F302	12/07/99	275	
03F302	06/09/00	840	
03F302	12/13/00	180	180 duplicate
03F302	06/05/01	180	
03F302	12/21/01	220	220 dup
03F302	06/04/02	180	

74%

Well	Date		
03F302	12/13/02	190	
03F302	06/10/03	190	
03F302	12/18/03	150	
03F302	06/15/04	130	120 duplicate
03F302	12/01/04	110	
03F302	06/03/05	120	
03F302	12/20/05	79	
03F302	06/06/06	100	
03F302	12/04/06	98	
03F302	6/4/2007	110	
03F302	12/13/07	110	110 dup
03F302	6/11/2008	130	
03F302	12/03/08	93	
03F302	6/3/2009	89	
03F302	12/08/09	67	
03F302	6/1/2010	70	
03F302	12/06/10	84	
03F302	6/3/2011	86	
03F302	12/05/11	99	
03F302	5/29/2012	98	
03F302	12/13/12	91	
03F302	6/14/2013	68	
03F302	12/03/13	55	
03F302	6/3/2014	54	
03F302	12/4/2014	38	
03F302	6/5/2015	35	34 dup
03F302	12/8/2015	41	
03F302	6/6/2016	52	51 dup
03F302	12/7/2016	53	
03F302	6/7/2017	56	
03F302	12/7/2017	80	
03F302	6/8/2018	46	45 dup
	B2		
03F303	11/17/87	190	_
03F303	12/15/87	282	
03F303	01/12/88	375	
03F303	04/28/88	274	
03F303	07/19/88	700	
03F303	10/21/88	1000	
03F303	03/16/89	1200	
03F303	04/20/89	1100	

Well	Date		
03F303	07/19/89	860	
03F303	10/24/89	850	
03F303	01/18/90	650	
03F303	05/08/90	700	
03F303	07/13/90	510	
03F303	12/19/90	320	
03F303	03/19/91	380	
03F303	06/05/91	350	
03F303	09/05/91	360	
03F303	12/04/91	360	
03F303	03/06/92	400	
03F303	06/05/92	390	
03F303	09/01/92	430	
03F303	03/03/93	340	
03F303	09/15/93	390	350 duplicate
03F303	03/03/94	250	
03F303	09/07/94	180	160 duplicate
03F303	03/14/95	120	
03F303	09/11/95	140	
03F303	06/06/96	106	
03F303	09/10/96	135	
03F303	12/11/96	87.9	
03F303	06/09/97	61.5	
03F303	12/08/97	61.6	<0.56 duplicate
03F303	06/08/98	57	
03F303	12/02/98	65	
03F303	06/17/99	10.5	
03F303	12/07/99	60	
03F303	06/09/00	58	
03F303	12/14/00	40	
03F303	06/05/01	37	
03F303	12/21/01	47	
03F303	06/04/02	44	
03F303	12/16/02	51	
03F303	06/11/03	49	47 duplicate
03F303	12/19/03	34	
03F303	06/15/04	35	33 duplicate
03F303	06/03/05	34	
03F303	06/06/06	30	
03F303	06/05/07	25	
03F303	06/18/08	22	
03F303	06/03/09	25	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03F303	06/01/10	30	
03F303	06/03/11	25	
03F303	05/29/12	28	
03F303	06/14/13	29	28 duplicate
03F303	06/03/14	27	
03F303	06/05/15	27	
03F303	06/06/16	26	
03F303	06/08/17	27	
03F303	06/15/18	23	
	B 3		
03F304	11/17/87	5.1	_
03F304	12/15/87	8.33	
03F304	01/12/88	8.2	
03F304	04/28/88	6.62	
03F304	07/19/88	9.5	
03F304	03/16/89	6	
03F304	04/20/89	11	
03F304	07/19/89	4.6	
03F304	10/24/89	5.4	
03F304	01/18/90	5.1	
03F304	05/08/90	6.7	
03F304	07/13/90	7.3	
03F304	12/19/90	5.41	
03F304	03/19/91	8.34	
03F304	06/05/91	9.42	8 duplicate
03F304	09/05/91	7.83	
03F304	12/04/91	7.28	
03F304	03/06/92	7.3	
03F304	06/05/92	8.28	7.52 duplicate
03F304	09/01/92	7.33	6.67 duplicate
03F304	03/03/93	8.84	7.48 duplicate
03F304	09/15/93	12.1	
03F304	03/03/94	17.6	
03F304	09/07/94	31.5	
03F304	03/14/95	19.5	
03F304	09/11/95	27.4	
03F304	06/06/96	20.1	
03F304	09/10/96	27.1	
03F304	12/11/96	22	
03F304	06/09/97	18.7	
03F304	12/08/97	18.6	

43%

7.52	duplicate
6.67	duplicate
7.48	duplicate

Well	Date		
03F304	06/08/98	22.5	
03F304	12/02/98	11	11 Duplicate
03F304	06/17/99	67	•
03F304	12/07/99	6.8	
03F304	06/09/00	8.3	
03F304	12/14/00	7.8	
03F304	06/05/01	8.7	
03F304	12/21/01	1.9	
03F304	06/04/02	5.3	5.1 dup
03F304	12/13/02	5.1	
03F304	06/10/03	7.1	
03F304	12/18/03	5.8	
03F304	06/15/04	6.2	
03F304	12/01/04	6.9	
03F304	06/03/05	6.7	6.3 dup
03F304	12/20/05	5.8	
03F304	06/06/06	7.8	
03F304	12/04/06	6.8	
03F304	06/04/07	6.5	
03F304	12/13/07	5.7	
03F304	06/11/08	6.4	
03F304	12/03/08	5.7	
03F304	06/03/09	4.6	
03F304	12/08/09	3.9	
03F304	06/01/10	4.1	
03F304	12/06/10	4.3	
03F304	06/03/11	3.9	
03F304	12/05/11	3.6	
03F304	05/29/12	2.9	
03F304	12/13/12	4.1	
03F304	06/14/13	3.3	
03F304	12/03/13	3.2	
03F304	06/03/14	3.4	
03F304	12/04/14	2.6	
03F304	06/05/15	2.4	
03F304	12/08/15	2.2	
03F304	06/06/16	2.6	
03F304	12/07/16	3.1	
03F304	06/07/17	3.2	
03F304	12/07/17	3.5	
03F304	06/08/18	3.8	

Well	Date		
	B4		
03F305	11/17/87	22.9	-
03F305	12/15/87	54	
03F305	01/12/88	61	
03F305	04/28/88	26.3	
03F305	07/19/88	38	
03F305	03/16/89	68	
03F305	04/20/89	100	
03F305	07/19/89	140	
03F305	10/23/89	430	
03F305	01/18/90	590	
03F305	05/08/90	1200	1100 duplicate
03F305	07/13/90	1600	
03F305	12/19/90	1800	
03F305	03/19/91	2100	2100 duplicate
03F305	06/05/91	2100	
03F305	09/05/91	2900	2400 duplicate
03F305	12/04/91	2800	
03F305	03/06/92	2600	
03F305	06/05/92	2700	
03F305	09/01/92	3000	
03F305	03/03/93	2600	
03F305	09/15/93	2700	
03F305	03/03/94	2800	
03F305	09/07/94	2600	
03F305	03/14/95	1900	
03F305	09/11/95	2300	
03F305	06/06/96	1400	
03F305	09/10/96	2100	
03F305	12/11/96	1800	
03F305	06/09/97	1800	1500 duplicate
03F305	12/08/97	1400	
03F305	06/08/98	1700	
03F305	12/02/98	1000	
03F305	06/17/99	1000	
03F305	12/07/99	780	
03F305	06/09/00	630	
03F305	12/14/00	490	
03F305	06/05/01	500	
03F305	12/21/01	530	
03F305	06/04/02	420	
03F305	12/13/02	440	420 duplicate

87%

Well	Date		
03F305	06/10/03	520	
03F305	12/18/03	350	
03F305	06/15/04	320	<1 duplicate
03F305	12/01/04	300	
03F305	06/03/05	260	
03F305	12/20/05	220	220 duplicate
03F305	06/06/06	220	·
03F305	12/04/06	180	180 duplicate
03F305	06/04/07	170	
03F305	12/13/07	190	
03F305	06/11/08	160	
03F305	12/03/08	170	170 duplicate
03F305	06/03/09	130	
03F305	12/08/09	140	
03F305	06/01/10	140	
03F305	12/06/10	140	
03F305	06/03/11	120	
03F305	12/05/11	120	
03F305	05/29/12	110	
03F305	12/13/12	120	
03F305	06/14/13	110	
03F305	12/03/13	100	
03F305	06/03/14	100	
03F305	12/04/14	88	
03F305	06/05/15	86	
03F305	12/08/15	89	
03F305	06/06/16	85	
03F305	12/07/16	87	
03F305	06/06/17 12/07/17	81	
03F305 03F305	06/08/18	92 65	90 Dunlicata
035305	00/00/16	05	80 Duplicate
	B5		_
03F306	11/17/87	1500	
03F306	12/15/87	2130	
03F306	01/12/88	2420	
03F306	04/28/88	530	
03F306	07/19/88	2920	
03F306	10/21/88	1400	
03F306	03/16/89	2800	
03F306	04/20/89	2700	
03F306	07/19/89	2200	

Well	Date		
03F306	10/23/89	2700	
03F306	01/18/90	3300	
03F306	05/08/90	4200	
03F306	07/13/90	4900	4700 duplicate
03F306	12/19/90	6400	
03F306	03/19/91	7000	
03F306	06/05/91	6400	
03F306	09/05/91	7200	
03F306	12/04/91	7500	
03F306	03/06/92	6900	
03F306	06/05/92	6400	
03F306	09/01/92	8200	
03F306	03/03/93	7300	
03F306	09/15/93	7500	
03F306	03/03/94	5600	4900 duplicate
03F306	09/07/94	4900	
03F306	03/14/95	3400	
03F306	09/11/95	4300	
03F306	06/06/96	3100	
03F306	09/10/96	3700	
03F306	12/11/96	3100	
03F306	06/09/97	2400	
03F306	12/08/97	1700	
03F306	06/08/98	1600	
03F306	12/02/98	970	
03F306	06/17/99	950	
03F306	12/07/99	750	750 duplicate
03F306	06/09/00	550	
03F306	12/13/00	410	
03F306	06/05/01	400	
03F306	12/21/01	420	
03F306	06/04/02	340	
03F306	12/13/02	310	
03F306	06/10/03	400	
03F306	12/18/03	260	
03F306	06/15/04	260	
03F306	12/01/04	240	
03F306	06/03/05	210	
03F306	12/20/05	190	
03F306	06/06/06	230	
03F306	12/04/06	180	
03F306	06/04/07	170	

85%

Well	Date		
03F306	12/13/07	150	
03F306	06/11/08	170	
03F306	12/03/08	150	
03F306	06/03/09	120	
03F306	12/08/09	130	
03F306	06/01/10	130	
03F306	12/06/10	120	
03F306	06/03/11	100	
03F306	12/05/11	110	110 duplicate
03F306	05/29/12	100	
03F306	12/13/12	110	110 duplicate
03F306	06/14/13	110	
03F306	12/03/13	85	
03F306	06/03/14	87	
03F306	12/04/14	76	
03F306	06/04/15	72	
03F306	12/08/15	82	
03F306	06/09/16	85	
03F306	12/07/16	75	
03F306	06/06/17	75	
03F306	12/07/17	79	79 Dup
03F306	06/11/18	63	
	B6		
 03F307	11/17/87	2370	
03F307	12/15/87	3270	
03F307	01/12/88	3300	
03F307	04/28/88	3400	
03F307	07/19/88	2860	
03F307	10/21/88	3200	
03F307	03/16/89	4170	
03F307	04/20/89	3600	
03F307	07/19/89	2400	2400 duplicate
03F307	10/23/89	3300	
03F307	01/19/90	2700	
03F307	05/08/90	3200	
03F307	07/13/90	2800	
03F307	12/19/90	3500	2900, 3400 duplicate
03F307	03/19/91	2900	
03F307	06/06/91	2500	
03F307	09/05/91	2700	
03F307	12/04/91	2700	

Well	Date		
03F307	03/06/92	2700	2500 duplicate
03F307	06/05/92	2400	•
03F307	09/01/92	2600	
03F307	03/03/93	2100	
03F307	09/15/93	2400	
03F307	03/03/94	1600	
03F307	09/07/94	1400	
03F307	03/14/95	770	
03F307	09/11/95	840	
03F307	06/06/96	670	
03F307	09/10/96	640	
03F307	12/11/96	600	
03F307	09/06/97	198	
03F307	12/08/97	380	
03F307	06/08/98	450	
03F307	12/02/98	325	300 Duplicate
03F307	06/17/99	340	<1 Duplicate
03F307	12/07/99	290	
03F307	06/09/00	250	240 duplicate
03F307	12/13/00	230	
03F307	06/05/01	200	
03F307	12/20/01	240	
03F307	06/04/02	190	
03F307	12/13/02	180	180 duplicate
03F307	06/10/03	170	
03F307	12/18/03	130	
03F307	06/15/04	130	
03F307	12/01/04	120	
03F307	06/03/05	110	
03F307	12/20/05	95	
03F307	06/06/06	120	
03F307	12/04/06	100	
03F307	06/04/07	96	
03F307	12/13/07	85	
03F307	06/11/08	93	
03F307	12/03/08	90	
03F307	06/03/09	72	
03F307	12/08/09	75	
03F307	06/01/10	66	
03F307	12/06/10	58	
03F307	06/03/11	49	
03F307	12/05/11	51	

Well	Date			
03F307	05/29/12	45		
03F307	12/13/12	48		
03F307	06/14/13	46		
03F307	12/03/13	40		
03F307	06/03/14	39		
03F307	12/04/14	32		
03F307	06/04/15	29		
03F307	12/08/15	29	28 Duplicate	
03F307	06/06/16	27		
03F307	12/07/16	26		
03F307	06/06/17	22	22 Duplicate	
03F307	12/07/17	31		
03F307	06/08/18	25		89%
	B7			
03F308	03/16/89	75	-	
03F308	04/20/89	44		
03F308	07/19/89	29		
03F308	10/23/89	32		
03F308	01/19/90	22		
03F308	05/08/90	23		
03F308	07/13/90	20		
03F308	12/19/90	17.4	16.3 duplicate	
03F308	03/19/91	13.2		
03F308	06/06/91	8.22		
03F308	09/05/91	12.7		
03F308	12/04/91	10.7		
03F308	03/06/92	11		
03F308	06/05/92	8.52		
03F308	09/01/92	9.2		
03F308	03/03/93	9.73		
03F308	09/15/93	7.78		
03F308	03/03/94	5.41		
03F308	09/07/94	5.21		
03F308	03/14/95	3.18		
03F308	09/11/95	3.56		
03F308	06/06/96	3.04		
03F308	09/10/96	2.93		
03F308	12/11/96	1.87		
03F308	06/09/97	1.32		
03F308	12/08/97	1.9		
03F308	06/08/98	2		

TRCLE Concentrations in TGRS Extraction Wells

Well	Date	
03F308	12/02/98	1.9
03F308	06/17/99	1.8
03F308	12/07/99	1.5
03F308	06/09/00	1.5
03F308	12/14/00	1.1
03F308	06/05/01	1.2
03F308	12/20/01	1.3
03F308	06/04/02	1.2
03F308	12/13/02	1.2
03F308	06/10/03	1.7
03F308	12/19/03	1.3
03F308	06/15/04	1.7
03F308	06/03/05	1.9
03F308	06/06/06	2.4
03F308	06/04/07	2.3
03F308	06/03/09	2
03F308 03F308	06/03/11 06/25/13	2.2 2.4
03F308	06/04/15	2.4 2.2
03F308	07/21/16	2.2 1.7
03F308	06/15/18	1.8
001 000	00/13/10	1.0
	B11	
03F312	12/19/88	4.0
03F312 03F312	03/16/89 04/20/89	1.3 5
03F312 03F312	07/19/89	5 10
03F312	10/24/89	31
03F312	01/18/90	26
03F312	05/08/90	20
03F312	07/13/90	20
03F312	12/19/90	17.9
03F312	03/19/91	17
03F312	06/05/91	18.4
03F312	09/05/91	21.8
03F312	12/04/91	18.1
03F312	03/06/92	17.6
03F312	06/05/92	19.3
03F312	09/01/92	20.6
03F312	03/03/93	16.7
03F312	09/15/93	14.9
03F312	03/03/94	16.1

-64%

16.8 duplicate

Well	Date		
03F312	09/07/94	13.6	
03F312	03/14/95	8.2	
03F312	09/11/95	9.46	
03F312	06/06/96	4.05	3.96 duplicate
03F312	09/10/96	7.47	
03F312	12/11/96	9.23	7.03 duplicate
03F312	06/09/97	4.62	
03F312	12/08/97	4.89	
03F312	06/08/98	5.55	
03F312	12/01/98	4.9	
03F312	06/17/99	6	
03F312	12/07/99	6	
03F312	06/09/00	6	
03F312	12/13/00	4.8	
03F312	06/05/01	4.7	
03F312	12/21/01	3	
03F312	06/04/02	3.9	
03F312	12/13/02	4.2	
03F312	06/10/03	4.6	
03F312	12/18/03	3.3	3.1 duplicate
03F312	06/15/04	2.8	
03F312	12/01/04	3.2	
03F312	06/03/05	3.2	<1 dup
03F312	12/20/05	1.9	
03F312	06/06/06	2.3	
03F312	12/04/06	2.1	
03F312	06/04/07	2.4	
03F312	12/13/07	1.9	
03F312	06/11/08	1.8	
03F312	12/03/08	1.6	
03F312	06/03/09	1.5	
03F312	12/08/09	1.5	
03F312	06/01/10	1.6	
03F312	12/06/10	1.7	
03F312	06/03/11	1.4	
03F312	12/05/11 05/29/12	1.6	
03F312		1.5	
03F312 03F312	12/13/12	1.6 0.78	
03F312 03F312	06/14/13 12/03/13		
03F312 03F312	06/03/14	0 0	
03F312 03F312	12/31/14		
035312	12/31/14	0	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03F312	06/05/15	0	
03F312	12/08/15	0	
03F312	06/06/16	0	
03F312	06/08/17	0	
03F312	06/15/18	0	
		-	
	B13		
03F319	12/13/02	34	
03F319	02/19/03	100	
03F319	03/05/03	150	
03F319	04/10/03	130	
03F319	05/08/03	200	
03F319	06/10/03	300	290 duplicate
03F319	07/02/03	240	
03F319	8/13/03	320	
03F319	9/9/03	240	
03F319	12/18/03	370	
03F319	6/15/04	280	
03F319	12/1/04	230	
03F319	06/03/05	170	
03F319	12/20/05	160	
03F319	06/06/06	150	
03F319	12/04/06	150	
03F319	07/03/07	130	
03F319	12/13/07	160	
03F319	06/11/08	170	
03F319	12/03/08	140	
03F319	06/03/09	200	
03F319	12/08/09	180	
03F319	06/01/10	200	
03F319	12/06/10	190	
03F319	06/03/11	110	
03F319	12/05/11	97	
03F319	05/29/12	150	
03F319	12/13/12	260	
03F319	06/14/13	230	
03F319	12/03/13	200	
03F319	06/03/14	140	
03F319	12/04/14	120	
03F319	06/05/15	110	
03F319	12/08/15	100	100 Duplicate
03F319	06/06/16	130	

100%

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					Date	Well
03F319 12/07/17 160 160 Dup 03F319 06/08/18 110 70% SC1 3000				76	12/07/16	03F319
03F319 06/08/18 110 70% SC1 03U301 03/16/89 2750 03U301 04/20/89 1100 03U301 04/20/89 1100 03U301 07/19/89 3000 03U301 05/08/90 57 03U301 05/08/90 57 03U301 07/13/90 1200 03U301 03/19/91 1100 03U301 03/19/91 1100 03U301 03/19/91 1100 03U301 03/19/91 1100						
SC1 03U301 03/16/89 2750 03U301 04/20/89 1100 03U301 07/19/89 1100 03U301 10/24/89 3000 03U301 01/18/90 1700 03U301 01/18/90 57 03U301 07/13/90 1200 03U301 12/19/90 1300 03U301 03/19/91 1100			160 Dup	160	12/07/17	03F319
03U301 03/16/89 2750 03U301 04/20/89 1100 03U301 07/19/89 1100 03U301 10/24/89 3000 03U301 01/18/90 1700 03U301 01/18/90 57 03U301 05/08/90 57 03U301 07/13/90 1200 03U301 03/19/91 1100 03U301 03/19/91 1100	, D	70%		110	06/08/18	03F319
03U301 03/16/89 2750 03U301 04/20/89 1100 03U301 07/19/89 1100 03U301 10/24/89 3000 03U301 01/18/90 1700 03U301 01/18/90 57 03U301 05/08/90 57 03U301 07/13/90 1200 03U301 03/19/91 1100 03U301 03/19/91 1100						
03U30104/20/89110003U30107/19/89110003U30110/24/89300003U30101/18/90170003U30105/08/905703U30107/13/90120003U30112/19/90130003U30103/19/91110003U30106/04/911000						
03U30107/19/89110003U30110/24/89300003U30101/18/90170003U30105/08/905703U30107/13/90120003U30112/19/90130003U30103/19/91110003U30106/04/911000						
03U30110/24/89300003U30101/18/90170003U30105/08/905703U30107/13/90120003U30112/19/90130003U30103/19/91110003U30106/04/911000						
03U30101/18/90170003U30105/08/905703U30107/13/90120003U30112/19/90130003U30103/19/91110003U30106/04/911000						
03U30105/08/905703U30107/13/90120003U30112/19/90130003U30103/19/91110003U30106/04/911000						
03U30107/13/90120003U30112/19/90130003U30103/19/91110003U30106/04/911000						
03U301 12/19/90 1300 03U301 03/19/91 1100 03U301 06/04/91 1000						
03U301 03/19/91 1100 03U301 06/04/91 1000						
03U301 06/04/91 1000						
03U301 09/05/91 9.14 03U301 12/04/01 1200						
03U301 12/04/91 1200 03U301 03/06/92 1200						
03U301 03/06/92 1200 03U301 06/05/92 1200						
03U301 09/01/92 1400						
03U301 03/03/93 1600 1500 duplicate			1500 duplicato			
03U301 09/15/93 1400			1500 duplicate			
03U301 03/03/94 1800 1800 duplicate			1800 dunlicate			
03U301 09/07/94 1800			rooo aupicate			
03U301 03/14/95 780						
03U301 09/11/95 1300						
03U301 06/12/96 1200						
03U301 12/11/96 1500						
03U301 06/09/97 1100 910 duplicate			910 duplicate			
03U301 12/08/97 1000						
03U301 06/08/98 1200						
03U301 12/01/98 940				940	12/01/98	03U301
03U301 06/17/99 970				970	06/17/99	03U301
03U301 12/07/99 850				850	12/07/99	03U301
03U301 06/09/00 850				850	06/09/00	03U301
03U301 12/13/00 580				580	12/13/00	03U301
03U301 06/05/01 650				650	06/05/01	03U301
03U301 12/20/01 1100				1100	12/20/01	03U301
03U301 06/04/02 860				860	06/04/02	03U301
03U301 12/13/02 1000				1000	12/13/02	03U301

TRCLE Concentrations in TGRS Extraction Wells

Well	Date	
03U301	06/11/03	1100
03U301	12/19/03	960
03U301	06/15/04	900
03U301	12/01/04	860
03U301	06/03/05	880
03U301	12/20/05	700
03U301	06/06/06	710
03U301	12/04/06	720
03U301	06/04/07	750
03U301	12/13/07	800
03U301	06/11/08	700
03U301	12/03/08	820
03U301	06/03/09	670
03U301	12/08/09	610
03U301	06/01/10	740
03U301	12/06/10	750
03U301	06/03/11	590
03U301	12/05/11	860
03U301	05/29/12	830
03U301	12/13/12	790
03U301	06/14/13	920
03U301	12/03/13	990
03U301	06/03/14	920
03U301	12/04/14	970
03U301	06/05/15	940
03U301	12/08/15	1000
03U301	06/06/16	1700
03U301	12/07/16	3600
03U301	06/07/17	2600
03U301	12/07/17	2500
03U301	06/08/18	1400
	SC2	
03U314	01/05/89	37000
03U314	03/16/89	12000
03U314	04/20/89	11000
03U314	07/19/89	8900
03U314	10/24/89	8600
03U314	01/19/90	6500
03U314	05/08/90	6500
03U314	07/19/90	6300
03U314	12/19/90	6200

790 duplicate

-141%

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03U314	03/19/91	5800	5800 duplicate
03U314	06/05/91	6000	·
03U314	09/05/91	5400	
03U314	12/04/91	7300	7100 duplicate
03U314	03/06/92	4700	
03U314	06/05/92	4300	
03U314	09/01/92	4900	
03U314	03/03/93	2600	
03U314	09/15/93	1600	1500 duplicate
03U314	03/03/94	1300	
03U314	09/07/94	1100	
03U314	03/14/95	670	
03U314	09/11/95	600	
03U314	06/06/96	500	MIR
03U314	09/10/96	470	470 duplicate
03U314	12/11/96	440	
03U314	06/09/97	240	
03U314	12/08/97	218	
03U314	06/08/98	191	
03U314	12/01/98	190	
03U314	06/17/99	190	
03U314	12/07/99	160	
03U314	06/09/00	87.5	
03U314	12/13/00	100	
03U314	06/05/01	84	82 duplicate
03U314	12/20/01	93	91 dup
03U314	06/04/02	91	
03U314	12/13/02	78	
03U314	06/11/03	61	
03U314	12/19/03	69	
03U314	06/15/04	58	
03U314	12/01/04	52	
03U314	06/03/05	48	44 dup
03U314	12/20/05	44	
03U314	06/06/06	43	42 dup
03U314	12/04/06	50	
03U314	06/04/07	52	
03U314	12/13/07	45	
03U314	06/11/08	41	
03U314	12/03/08	37	
03U314	06/03/09	36	
03U314	12/08/09	45	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03U314	06/01/10	32	
03U314	12/06/10	40	
03U314	06/03/11	33	32 dup
03U314	12/05/11	39	·
03U314	05/29/12	30	
03U314	12/13/12	47	
03U314	06/14/13	41	
03U314	12/03/13	37	
03U314	06/03/14	36	
03U314	12/04/14	34	
03U314	06/05/15	28	
03U314	12/08/15	40	
03U314	06/06/16	40	
03U314	12/07/16	45	
03U314	06/08/17	38	37 dup
03U314	12/07/17	46	
03U314	06/08/18	28	
	SC3		
03U315	01/05/89	58	_
03U315	03/16/89	870	
03U315	04/20/89	1300	
03U315	07/19/89	940	
03U315	10/24/89	1700	
03U315	01/19/90	2100	
03U315	05/08/90	2100	2000 duplicate
03U315	07/13/90	2100	
03U315	12/19/90	1300	
03U315	03/19/91	940	
03U315	06/05/91	830	
03U315	09/05/91	700	
03U315	12/04/91	440	
03U315	03/06/92	330	
03U315	06/05/92	310	
03U315	09/01/92	250	210 duplicate
03U315	03/03/93	150	
03U315	09/15/93	88	
03U315	03/03/94	110	
03U315	09/07/94	69	
03U315	03/14/95	41.6	
03U315	09/11/95	51.3	
03U315	06/06/96	43.3	MIR

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03U315	09/10/96	38	
03U315	12/11/96	30.8	
03U315	06/09/97	20.9	
03U315	12/08/97	15.9	
03U315	06/08/98	18.4	18 duplicate
03U315	12/01/98	15	
03U315	06/17/99	14	
03U315	12/07/99	10	
03U315	06/09/00	6.9	
03U315	12/13/00	5.5	
03U315	06/05/01	4.6	
03U315	12/20/01	3.8	
03U315	06/04/02	4.6	
03U315	12/13/02	2.1	
03U315	06/11/03	1.9	
03U315	12/19/03	1.5	
03U315	06/15/04	1.3	
03U315	06/03/05	6.1	
03U315	06/04/07	0.81	
03U315	06/03/09	0.58	
03U315	06/03/11	0.35	JP
03U315	06/14/13	0.36	JP
03U315	06/05/15	0.44	JP
03U315	07/22/16	0.33	JP
03U315	06/15/18	0.3	JP
0011040	SC4		
03U316	01/05/89	1	
03U316	03/16/89	2.9	
03U316	04/20/89 07/19/89	4.9	
03U316 03U316	10/24/89	4.2 5.5	
03U316	01/19/90	5.5 10	9 duplicate
03U316	05/08/90	10	9 duplicate
03U316	07/13/90	12	
03U316	12/19/90	14.9	
03U316	03/19/91	14.3	
03U316	06/04/91	14.3	
03U316	09/05/91	16.6	
03U316	12/04/91	16.7	
03U316	03/06/92	17.6	
03U316	06/05/92	18.1	17.7 duplicate
			•

95%

68%

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03U316	09/01/92	20.8	
03U316	03/03/93	17.8	
03U316	09/15/93	22.7	
03U316	03/03/94	23.2	
03U316	09/07/94	24.2	23 duplicate
03U316	03/14/95	14.4	12.4 duplicate
03U316	09/11/95	19.4	
03U316	06/06/96	23	19.7 duplicate
03U316	09/10/96	24.4	
03U316	12/11/96	28.6	
03U316	06/09/97	24.2	
03U316	12/22/98	23	
03U316	06/17/99	22	
03U316	12/07/99	31	29 duplicate
03U316	06/09/00	18	
03U316	12/13/00	6.9	
03U316	06/06/01	5	
03U316	12/20/01	5.5	
03U316	06/04/02	8.9	5.5 dup
03U316	12/13/02	5	
03U316	06/11/03	7	
03U316	12/19/03	8	
03U316	06/03/05	0.6	
03U316	06/04/07	5.5	
03U316	06/03/09	4.9	
03U316	06/03/11	3.8	
03U316	06/24/13	3.5	
03U316	06/05/15	2.6	
03U316	07/22/16	2.7	
03U316	06/15/18	2.2	
	SC5		
03U317	01/05/89	1	
03U317	03/16/89	12000	
03U317	04/20/89	19000	
03U317	07/19/89	18000	
03U317	10/25/89	21000	18000 duplicate
03U317	01/19/90	15000	
03U317	05/08/90	3200	
03U317	07/13/90	13000	
03U317	12/19/90	23000	18000 duplicate
03U317	03/19/91	14000	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03U317	06/04/91	15000	
03U317	09/05/91	19000	
03U317	12/04/91	12000	
03U317	03/06/92	17000	
03U317	06/05/92	18000	
03U317	09/01/92	16000	
03U317	03/03/93	16000	
03U317	09/15/93	14000	
03U317	03/03/94	15000	8
03U317	09/07/94	12000	
03U317	03/14/95	6700	
03U317	09/11/95	8400	
03U317	06/06/96	7400	MIR
03U317	09/10/96	8000	
03U317	12/11/96	6800	
03U317	06/09/97	4700	
03U317	12/08/97	7100	6700 duplicate
03U317	06/08/98	4700	
03U317	12/01/98	5500	
03U317	06/17/99	6500	
03U317	12/07/99	7000	
03U317	06/09/00	7200	6800 duplicate
03U317	12/13/00	2800	
03U317	06/05/01	2500	
03U317	12/20/01	3900	
03U317	06/04/02	2600	
03U317	12/13/02	2500	
03U317	06/11/03	2600	
03U317	12/19/03	3100	
03U317	06/15/04	3000	0500 due
03U317	12/01/04	3600	3500 dup
03U317	06/03/05 12/20/05	3100	
03U317	06/06/06	3100	
03U317 03U317	12/04/06	1900	
03U317 03U317	06/04/07	2500 2400	2400 dup
03U317 03U317	12/13/07	2400 3200	2400 dup
03U317 03U317	06/11/08	2900	2600 dup
03U317 03U317	12/03/08	2900 4100	2000 uup
03U317 03U317	06/03/09	2800	
03U317 03U317	12/08/09	2600	
03U317 03U317	06/01/10	2000	
000017		2000	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
03U317	12/06/10	2200	
03U317	06/03/11	1800	
03U317	12/05/11	2400	
03U317	05/29/12	2500	2300 dup
03U317	12/13/12	3500	3500 dup
03U317	06/14/13	2600	
03U317	12/03/13	2200	
03U317	06/03/14	2200	2200 dup
03U317	12/04/14	1800	1800 dup
03U317	06/05/15	2000	
03U317	12/08/15	2200	
03U317	06/06/16	2600	
03U317	12/07/16	3300	
03U317	06/08/17	3100	
03U317	12/07/17	2900	
03U317	06/08/18	2200	
	B8		
PJ#309	11/18/88	0	
PJ#309	03/16/89	200	
PJ#309	04/20/89	320	
PJ#309	07/19/89	190	
PJ#309	10/23/89	270	
PJ#309	01/18/90	260	
PJ#309	05/08/90	280	
PJ#309	07/13/90	250	
PJ#309	12/19/90	220	
PJ#309	03/19/91	260	
PJ#309	06/05/91	300	
PJ#309	09/05/91	260	
PJ#309	12/04/91	210	
PJ#309	03/06/92	160	
PJ#309	06/05/92	140	
PJ#309	09/01/92	160	
PJ#309	03/03/93	130	
PJ#309	09/15/93	110	8
PJ#309	03/03/94	92	
PJ#309	09/07/94	73	
PJ#309	03/14/95	49	
PJ#309	09/11/95	56	
PJ#309	06/06/96	43.4	
PJ#309	09/10/96	49.8	49.6 duplicate

TRCLE Concentrations in TGRS Extraction Wells

Well	Date	
PJ#309	12/11/96	42.9
PJ#309	06/09/97	27.5
PJ#309	12/08/97	28.6
PJ#309	06/08/98	36.4
PJ#309	12/02/98	24
PJ#309	06/17/99	27
PJ#309	12/07/99	26
PJ#309	06/09/00	24
PJ#309	12/13/00	21
PJ#309	06/05/01	21
PJ#309	12/21/01	20
PJ#309	06/04/02	22
PJ#309	12/13/02	20
PJ#309	06/10/03	23
PJ#309	12/18/03	20
PJ#309	06/15/04	21
PJ#309	12/01/04	20
PJ#309	06/03/05	24
PJ#309	12/20/05	16
PJ#309	06/06/06	21
PJ#309	12/04/06	21
PJ#309	06/04/07	22
PJ#309	12/13/07	19
PJ#309	06/11/08	26
PJ#309	12/03/08	25
PJ#309	06/03/09	23
PJ#309	12/08/09	24
PJ#309	06/01/10	22
PJ#309	12/06/10	21
PJ#309	06/03/11	18
PJ#309	12/05/11	17
PJ#309	05/29/12	16
PJ#309	12/13/12	16
PJ#309	06/14/13	16
PJ#309	12/03/13	14
PJ#309	06/03/14	13
PJ#309	12/04/14	11
PJ#309	06/05/15	10
PJ#309	12/08/15	11
PJ#309	06/06/16	8.8
PJ#309	12/07/16	9.9
PJ#309	06/06/17	8.9

19 duplicate

23 duplicate

22 duplicate

14 dup

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
PJ#309	12/07/17	9.6	9.4 dup
PJ#309	06/08/18	7.9	
	B9		
PJ#310	03/16/89	470	_
PJ#310	04/20/89	700	
PJ#310	07/19/89	480	
PJ#310	10/11/89	560	
PJ#310	01/19/90	630	
PJ#310	05/08/90	500	
PJ#310	07/13/90	690	
PJ#310	12/19/90	610	
PJ#310	03/19/91	580	
PJ#310	06/06/91	470	
PJ#310	09/05/91	590	
PJ#310	12/04/91	520	
PJ#310	03/06/92	520	
PJ#310	06/05/92	540	
PJ#310	09/01/92	700	
PJ#310	03/03/93	580	
PJ#310	09/15/93	480	
PJ#310	03/03/94	450	
PJ#310	09/07/94	380	
PJ#310	03/14/95	330	
PJ#310	09/11/95	340	
PJ#310	06/06/96	290	
PJ#310	09/10/96	290	
PJ#310	12/11/96	240	
PJ#310	06/09/97	190	
PJ#310	12/08/97	152	
PJ#310	06/08/98	210	
PJ#310	12/02/98	140	
PJ#310	06/17/99	160	155 Duplicate
PJ#310	12/07/99	150	
PJ#310	06/09/00	120	
PJ#310	12/13/00	110	110 duplicate
PJ#310	06/05/01	100	96 duplicate
PJ#310	12/21/01	120	
PJ#310	06/04/02	120	
PJ#310	12/13/02	120	
PJ#310	06/10/03	140	
PJ#310	12/18/03	110	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
PJ#310	06/15/04	120	
PJ#310	12/01/04	110	
PJ#310	06/03/05	120	
PJ#310	12/20/05	88	
PJ#310	06/06/06	120	
PJ#310	12/04/06	120	
PJ#310	07/03/07	97	96 dup
PJ#310	12/13/07	90	·
PJ#310	06/11/08	100	
PJ#310	12/03/08	90	
PJ#310	06/03/09	71	
PJ#310	12/08/09	73	69 duplicate
PJ#310	06/01/10	66	
PJ#310	12/06/10	74	73 dup
PJ#310	06/03/11	58	
PJ#310	12/05/11	60	
PJ#310	05/29/12	56	
PJ#310	12/13/12	55	
PJ#310	06/14/13	55	54 dup
PJ#310	12/03/13	46	
PJ#310	06/03/14	50	
PJ#310	12/04/14	44	
PJ#310	06/04/15	42	
PJ#310	12/08/15	42	
PJ#310	06/06/16	37	
PJ#310	12/07/16	33	
PJ#310	06/06/17	33	
PJ#310	12/07/17	37	
PJ#310	06/11/18	29	
	B10		_
PJ#311	03/16/89	150	
PJ#311	04/20/89	82	
PJ#311	07/19/89	67	
PJ#311	10/24/89	52	
PJ#311	01/19/90	47	
PJ#311	05/08/90	17	
PJ#311	07/13/90	30	
PJ#311	12/19/90	30.9	
PJ#311	03/19/91	24.8	
PJ#311	06/06/91	25	24.8 duplicate
PJ#311	09/05/91	25.1	

TRCLE Concentrations in TGRS Extraction Wells

Well	Date			
PJ#311	12/04/91	25.4		
PJ#311	03/06/92	25.2		
PJ#311	06/05/92	23.6		
PJ#311	09/01/92	20.9		
PJ#311	03/03/93	19.6		
PJ#311	09/15/93	21.7		
PJ#311	03/03/94	19.2		
PJ#311	09/07/94	22.6		
PJ#311	03/14/95	13.7		
PJ#311	09/11/95	14.7		
PJ#311	06/06/96	10.9		
PJ#311	09/10/96	14.6		
PJ#311	12/11/96	14.3	14.3 duplicate	
PJ#311	06/09/97	7.8		
PJ#311	12/08/97	8.36		
PJ#311	06/08/98	8.71	8.53 duplicate	
PJ#311	12/02/98	7.4		
PJ#311	06/17/99	6.8		
PJ#311	12/07/99	6.3		
PJ#311	06/09/00	6.2		
PJ#311	12/13/00	5.1		
PJ#311	06/05/01	5.1		
PJ#311	12/20/01	1.6		
PJ#311	06/04/02	4.5		
PJ#311	12/13/02	1.1		
PJ#311	06/10/03	0.75		
PJ#311	12/19/03	0.63		
PJ#311	06/15/04	10	<1 duplicate	
PJ#311	06/03/05	0.59	<1 duplicate	
PJ#311	06/04/07	0.52		
PJ#311	06/03/09	0.47		
PJ#311	06/03/11	0.39	JP	
PJ#311	06/14/13	0.57	JP 0.53JP duplicate	
PJ#311	06/04/15	0.44	JP	
PJ#311	07/21/16	0		
PJ#311	06/15/18	0		1
	B12			
PJ#313	03/16/89	18		
PJ#313	04/20/89	27		
PJ#313	07/19/89	25		
PJ#313	10/23/89	15		

TRCLE Concentrations in TGRS Extraction Wells

Well	Date		
PJ#313	01/19/90	14	
PJ#313	05/08/90	17	
PJ#313	07/13/90	12	
PJ#313	12/19/90	10.3	
PJ#313	03/19/91	9.12	
PJ#313	06/05/91	6.97	
PJ#313	12/04/91	7.64	7.55 duplicate
PJ#313	03/06/92	5.76	
PJ#313	06/05/92	5.78	
PJ#313	09/01/92	6.11	
PJ#313	03/03/93	4.95	
PJ#313	09/15/93	4.17	
PJ#313	03/03/94	4.47	
PJ#313	09/07/94	3.84	
PJ#313	03/14/95	2.51	
PJ#313	09/11/95	2.61	2.61 duplicate
PJ#313	06/06/96	2.7	MIR
PJ#313	09/10/96	2.25	
PJ#313	12/11/96	0.868	
PJ#313	06/09/97	0	
PJ#313	12/22/98	0	
PJ#313	06/17/99	0	<1 duplicate
PJ#313	12/07/99	0	
PJ#313	06/09/00	0	
PJ#313	12/14/00	0	
PJ#313	06/05/01	0.18	
PJ#313	12/20/01	0	
PJ#313	06/04/02	0.22	
PJ#313	12/16/2002	0.093	
PJ#313	6/10/2003	0	
PJ#313	12/19/03	0	
PJ#313	6/3/2005	0	
PJ#313	6/4/2007	0	
PJ#313	6/3/2009	0	
PJ#313	6/3/2011	0	
PJ#313	6/14/2013	0	
PJ#313	6/4/2015	0	
PJ#313	7/21/2016	0	
PJ#313	6/15/2018	0	<1.0 dup

Influent/Effluent Database Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

	TGRS Cle	anup Level ⁽¹⁾	00 1,1,1-Trichloroethane	0, 1,1-Dichloroethane	0.9 1,1-Dichloroethene	0. 1,2-Dichloroethane	0 cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene
Location	Date		μg/L	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L
TGRSE	10/3/2017		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.3
TGRSE	10/3/2017	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.2
TGRSE	11/2/2017		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.4
TGRSE	11/2/2017	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.4
TGRSE	12/7/2017		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.9
TGRSE	12/7/2017	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.9
TGRSE	1/4/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.4
TGRSE	2/6/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.4
TGRSE	2/6/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.4
TGRSE	3/1/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.6 UB0.43
TGRSE	3/1/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.6 UB0.43
TGRSE	4/3/2018	•	< 1.0 UJT8.0JD37.0) < 1.0 UJT8.0JD31.3	< 1.0 UJT8.0JMS73.5JD41.1	< 1.0 UJT8.0JD23.0	< 1.0 UJT8.0JD33.7	< 1.0 UJT8.0JD23.2	2.3 UB0.46JT8.0JD38.4
TGRSE	4/3/2018	D	< 1.0 UJT8.0	< 1.0 UJT8.0	< 1.0 UJT8.0	< 1.0 UJT8.0	< 1.0 UJT8.0	< 1.0 UJT8.0	2.1 UB0.46JT8.0
TGRSE	5/2/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.7 UB0.38
TGRSE	6/11/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 UJL74.6JMS74.6	1.7
TGRSE	6/11/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 UJL74.6	1.6
TGRSE	7/5/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7
TGRSE	7/5/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7
TGRSE	8/3/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7
TGRSE	8/3/2018	D	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7
TGRSE	9/5/2018		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.7

Influent/Effluent Database Fiscal Year 2018 TGRS, OU2 Arden Hills, Minnesota

			1,1,1-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,2-Dichloroethane	cis-1,2-Dichloroethene	Tetrachloroethene	Trichloroethene
	TGRS Clean	up Level ⁽¹⁾	200	70	6.0	4.0	70	5.0	5.0
Location	Date		μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μg/L
TGRSI	10/3/2017		39	2	2.7	< 1.0	3.3	1.1	220
TGRSI	11/2/2017		35	1.9	3.4	< 1.0	5.4	0.85 JP	220
TGRSI	12/7/2017		42	2.1	3.2	< 1.0	3.9	0.91 JP	230
TGRSI	1/4/2018		45	2.3	3.3	< 1.0	3.9	1.2	230
TGRSI	1/4/2018	D	45	2.2	3.4	< 1.0	3.8	1.2	220
TGRSI	2/6/2018		34	1.8	2.5	< 1.0	3.6	0.95 JP	200
TGRSI	3/1/2018		40	2	3.2	< 1.0	4.1	1	200
TGRSI	4/3/2018		44 JT8.0	2.1 JT8.0	3.9 JT8.0	< 1.0 UJT8.0	3.8 JT8.0	1.1 JT8.0	190 JT8.0
TGRSI	5/2/2018		44	2.1	3	< 1.0	2.8	0.99 JP	210
TGRSI	5/2/2018	D	42	2	2.8	< 1.0	2.9	0.96 JP	220
TGRSI	6/11/2018		35	1.8	2.6	< 1.0	2.9	0.76 JL74.6	180
TGRSI	7/5/2018		37	2.1	2.8	< 1.0	3.2	0.68 JP	190
TGRSI	8/3/2018		37	2.2	2.8	< 1.0	2.7	1.3	190
TGRSI	9/5/2018		32	2.1	2.6	< 1.0	3.2	1.3	170
TGRSI	9/5/2018	D	32	2	2.5	< 1.0	3.1	1.3	170

Notes:

 $^{(1)}$ Cleanup levels for TGRS are from the OU2 ROD.

D - Field Duplicate

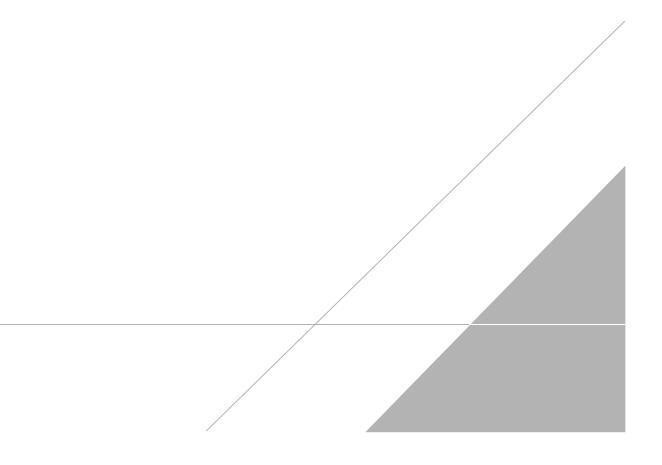
MDL - Method Detection Limit

RL - Reporting Limit

JP - Result is qualified as estimated since the detection is below the laboratory reporting limit

JT# - Result is qualified as estimated due to sample temperature exceedance. The following numerical value is the associated sample temperature.

JL# - Result is qualified as estimated due to outlying LCS recovery. The following numerical value is the associated %LCS recovery.


JMS# - Result is qualified as estimated due to outlying MS recovery. The following numerical value is the associated % MS recovery.

JD# - Result is qualified as estimated due to outlying RPD value. The following numerical value is the associated outlying RPD value.

UB# - Result is qualified as non-detect. The following numerical value is The associated blank concentration.

APPENDIX I

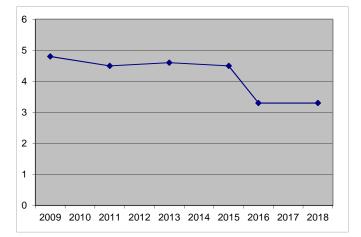
Maros Decision Matrix

Appendix I

Table I.1Maros Decision Matrix

		Coefficient of	
Kendall S	Confidence	Varience	Trend
S > 0	> 95%	NA	Definitely Increasing
S > 0	90-95%	NA	Probably Increasing
S > 0	< 90%	NA	No Trend
S = 0</td <td>< 90%</td> <td>>/= 1</td> <td>No Trend</td>	< 90%	>/= 1	No Trend
S = 0</td <td>< 90%</td> <td>< 1</td> <td>Stable</td>	< 90%	< 1	Stable
S < 0	90-95%	NA	Probably Decreasing
S < 0	>95%	NA	Definitely Decreasing

Table I.2Confidence Values for Six Data Pairs


Kendall S	Confidence
1	50.00%
3	64.00%
5	76.50%
7	86.40%
9	93.20%
11	97.20%
13	99.17%
15	99.86%

WELL 03L848 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2018

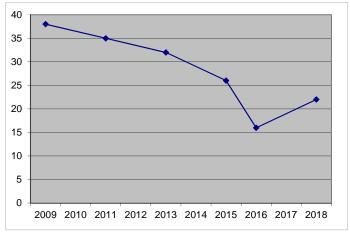
Date	TCE (µg/l)	Mai	nn-Kendall C	alculation:						
6/14/2009	4.8	1								
6/24/2011	4.5	1	-1							
6/27/2013	4.6	1	-1	1						
6/11/2015	4.5	1	-1	0	-1					
7/27/2016	3.3	1	-1	-1	-1	-1				
6/28/2018	3.3	1	-1	-1	-1	-1	0			
1	N	6	5	4	3	2	1	0		15
5	sum		-5	-1	-3	-2	0	0	Kendall S	-11
I	Possibles	15								

Kendall tau -0.733

Mean STNDEV COV	4.17 0.6802 0.1632	
Trend:		Negative
Confidence (lookup)	97.20%

Raw Data 03L848

Date	TCE
12/2/1987	570
5/3/1989	270
7/20/1989	130
10/19/1989	610
4/19/1990	460
7/19/1990	260
3/18/1991	250
3/18/1992	92
3/9/1993	52.9
6/6/1994	27
9/15/1994	27.1
12/8/1994	22
3/10/1995	16.6
6/3/1996	11.3
6/5/1997	9.34
6/5/1997	8.57 D
6/29/1998	10.7
6/4/1999	7.3
6/12/2001	3.5
6/1/2003	3.8
6/21/2005	5.8

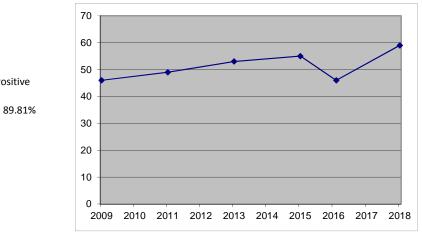

Date	TCE
6/21/2007	5.4
6/21/2007	5.3 D
6/17/2009	4.8
6/17/2009	2.6 D
6/24/2011	4.5
6/27/2013	4.9
6/11/2015	4.4
6/11/2015	4.5 D
7/27/2016	3.3
6/28/2018	3.3

WELL 04U673 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2018

Date	TCE (µg/l)	Mar	nn-Kendall C	alculation:						
6/18/2009	38	1								
6/24/2011	35	1	-1							
6/24/2013	32	1	-1	-1						
6/12/2015	26	1	-1	-1	-1					
7/26/2016	16	1	-1	-1	-1	-1				
6/29/2018	22	1	-1	-1	-1	-1	1			
		C	-	4	2	2	1	0		15
I	N	6	5	4	3	-	1	0		15
		sum	-5	-4	-3	-2	1	0	Kendall S	-13
F	Possibles	15								

Kendall tau -0.867

Mean	28.17	
STNDEV	8.3526	
COV	0.2965	
Trend:		Negative
Confidence (lookup)		99.17%


Raw Data 04U673

ata				
73	Date	TCE	Date	TCE
	11/24/1987	145	3/15/1995	160
	1/21/1988	580	3/15/1995	140
	5/16/1988	560	9/12/1995	260
	8/4/1988	253	6/12/1996	125
	11/1/1988	1700	6/12/1997	60.4
	5/3/1989	700	6/25/1998	81.9
	7/21/1989	1200	6/4/1999	74
	10/19/1989	1100	6/12/2001	2.9
	5/1/1990	3100	6/1/2003	15
	3/11/1991	990	6/1/2004	51
	3/11/1991	940	6/22/2005	49
	6/17/1991	410	6/21/2007	42
	3/12/1992	460	6/18/2009	38
	6/4/1992	430	6/24/2011	35
	9/8/1992	540	6/27/2013	32
	3/3/1993	280	6/12/2015	26
	9/13/1993	190	7/26/2016	15
	3/3/1994	270	7/26/2016	16 D
	6/6/1994	210	6/29/2018	22
	9/8/1994	170		
	12/8/1994	190		

WELL 04U832 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2018

Date	TCE (µg/l)	Man	n-Kendall C	alculation:						
6/19/2009	46	1								
6/23/2011	49	1	1							
6/27/2013	53	1	1	1						
6/10/2015	55	1	1	1	1					
7/27/2016	46	1	0	-1	-1	-1				
6/28/2018	59	1	1	1	1	1	1			
	N	6	5	4	3	2	1	0		15
I	·	sum	4	2	1	0	1	0	Kendall S	8
	Dessibles		4	2	1	0	T	0	Kenuali 5	0
ł	Possibles	15								

Kendall tau 0.533

Date

6/17/2008

6/19/2009

6/23/2011

6/27/2013

6/10/2015

7/27/2016

6/28/2018

TCE

48

46

49

53

55

46

59

Raw Data 04U832

Mean

COV

Trend:

Confidence (lookup)

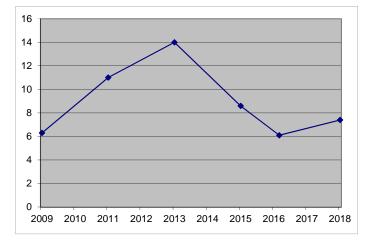
STNDEV

3			
	Date	TCE	
	11/24/1987	100	
	12/16/1988	65	
	4/25/1990	69.53	
	3/19/1991	47.6	
	3/25/1992	52.5	
	3/16/1993	42	
	3/16/1993	45.9	
	6/10/1994	49	
	9/13/1994	49.5	
	12/7/1994	43.3	
	12/7/1994	47.1	
	3/10/1995	56	
	6/3/1996	41	
	6/4/1997	35.2	
	6/25/1998	36.4	
	6/7/1999	29	
	6/14/2001	3.5	
	6/1/2003	4.1	
	6/23/2005	41	
	6/13/2006	54	
	6/22/2007	56	

51.33

5.2409

0.1021


Positive

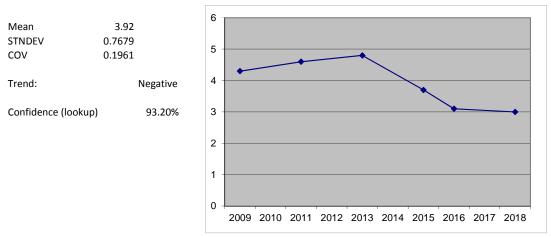
WELL 04U845 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2018

Date	TCE (µg/l)	Mar	n-Kendall C	alculation:						
6/17/2009	6.3	1								
6/23/2011	11	1	1							
6/25/2013	14	1	1	1						
6/11/2015	8.6	1	1	-1	-1					
8/2/2016	6.1	1	-1	-1	-1	-1				
6/27/2018	7.4	1	1	-1	-1	-1	1			
1	N	6	5	4	3	2	1	0		15
		sum	3	-2	-3	-2	1	0	Kendall S	-3
F	Possibles	15								

Kendall tau -0.2

Mean STNDEV	8.90 3.08	
COV	0.3458	
Trend:		Negative
Confidence (lookup)		64.00%

Raw Data 04U845


Date	TCE
12/1/1987	59
12/16/1988	155
5/4/1989	100
7/20/1989	160
10/20/1989	62
4/26/1990	38
3/20/1991	100
3/23/1992	>50.10
3/23/1992	100
3/15/1993	84
6/8/1994	64
9/13/1994	70
12/7/1994	54
3/10/1995	39.5
6/4/1996	51.2
6/5/1997	30.8
6/25/1998	32.9
6/7/1999	35
6/13/2001	4.3
6/1/2003	4
6/22/2005	20

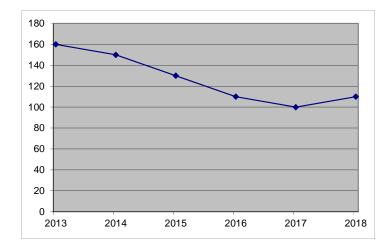
Date	TCE
6/13/2006	14
6/13/2006	14
6/22/2007	15
6/17/2008	15
6/17/2009	6.3
6/23/2011	11
6/25/2013	14
6/11/2015	8.6
8/2/2016	6.1
6/27/2018	7.4

WELL 04U848 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2016

Date	TCE (µg/l)	Mar	nn-Kendall C	alculation:						
6/17/2009	4.3	1								
6/24/2011	4.6	1	1							
6/27/2013	4.8	1	1	1						
6/11/2015	3.7	1	-1	-1	-1					
7/27/2016	3.1	1	-1	-1	-1	-1				
6/28/2018	3.0	1	-1	-1	-1	-1	-1			
r	N	6	5	4	3	2	1	0		15
		sum	-1	-2	-3	-2	-1	0	Kendall S	-9
ſ	Possibles	15								

Kendall tau -0.6

TCE 0.46 JP 5.6 5.3 4.3 4.6 4.8 3.7 3.1 3.0


Raw Data 04U848

ala			
8	Date	TCE	Date
	12/2/1987	700	6/1/2003
	8/24/1988	470	6/21/2005
	5/3/1989	150	6/21/2007
	7/20/1989	700	6/17/2009
	10/19/1989	280	6/24/2011
	4/19/1990	240	6/27/2013
	7/19/1990	140	6/11/2015
	9/17/1990	150	7/27/2016
	3/18/1991	64	6/28/2018
	3/18/1992	22.5	
	3/18/1992	23.4	
	3/10/1993	26	
	6/6/1994	12.2	
	9/15/1994	16.8	
	12/8/1994	15.6	
	3/10/1995	9.94	
	6/3/1996	6.15	
	6/5/1997	3.3	
	6/29/1998	4.19	
	6/4/1999	3.6	
	6/12/2001	0.49 J	

WELL 03M848 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2017

Date	TCE (µg/l)	Mar	in-Kendall C	alculation:						
6/27/2013	160	1								
6/9/2014	150	1	-1							
6/11/2015	130	1	-1	-1						
6/14/2016	110	1	-1	-1	-1					
6/8/2017	100	1	-1	-1	-1	-1				
6/28/2018	110	1	-1	-1	-1	0	1			
١	J	6	5	4	3	2	1	0		15
		sum	-5	-4	-3	-1	1	0	Kendall S	-12
F	Possibles	15								

Kendall tau -0.8

Raw Data

Mean

COV

Trend:

Confidence (lookup)

STNDEV

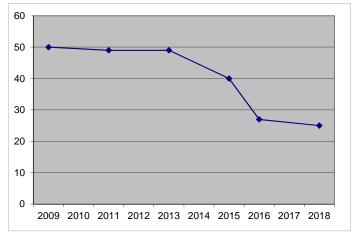
126.67

24.2212

0.1912

Negative

98.19%


Raw Data					
03M848	Date	TCE		Date	TCE
	12/2/1987	440		6/1/2003	450
	4/19/1990	190		6/21/2005	230
	7/19/1990	190		6/13/2006	190
	9/17/1990	330		6/21/2007	150
	3/18/1991	310		6/18/2008	130
	6/4/1991	730		6/17/2009	130
	9/3/1991	700		6/8/2010	130
	3/18/1992	640		6/24/2011	150
	6/3/1992	>50.10		6/24/2011	160 D
	6/3/1992	570	D	6/1/2012	190
	9/3/1992	>50.10		6/1/2012	180 D
	3/9/1993	1300		6/27/2013	160
	3/9/1993	970	D	6/9/2014	150
	3/17/1994	910		6/9/2014	150 D
	3/16/1995	59		6/11/2015	130
	6/21/1996	1400		6/14/2016	110
	6/26/1997	510		6/14/2016	110 D
	6/29/1998	660		6/8/2017	100
	6/4/1999	700		6/28/2018	110
	6/4/1999	650	D		
	6/12/2001	370			

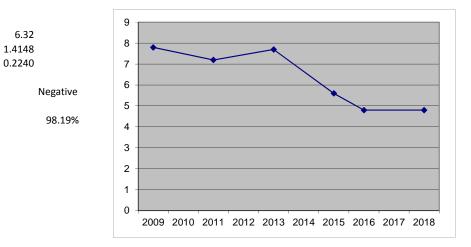
WELL 04U859 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2016

Date	TCE (µg/l)	Mar	n-Kendall C	alculation:						
6/18/2009	50	1								
6/24/2011	49	1	-1							
6/27/2013	49	1	-1	0						
6/10/2015	40	1	-1	-1	-1					
7/29/2016	27	1	-1	-1	-1	-1				
6/28/2018	25	1	-1	-1	-1	-1	-1			
		C	F	4	2	2	1	0		15
I	N	6	5	4	3	2	1	0		15
		sum	-5	-3	-3	-2	-1	0	Kendall S	-14
F	Possibles	15								

Kendall tau -0.933

Mean STNDEV COV	40.00 11.4543 0.2864	
Trend:		Negative
Confidence (lookup)	99.51%

Raw Data 04U859


Date	TCE
11/13/1987	0.3
12/15/1988	8.5
4/30/1990	5.59
3/19/1991	5.24
3/20/1992	9.29
3/11/1993	40.5
3/18/1994	47
3/18/1994	49.5
6/9/1994	48.9
9/14/1994	64
12/7/1994	52.5
3/10/1995	43.8
6/3/1996	50.8
6/4/1997	31.9
6/25/1998	42
6/25/1998	46.8
6/7/1999	75
6/13/2001	8.4
6/1/2003	4.4
6/22/2005	71
6/21/2007	60

Date	TCE
6/18/2009	50
6/24/2011	49
6/27/2013	49
6/10/2015	40
7/29/2016	27
6/28/2018	25

WELL 03L859 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2016

Date	TCE (µg/l)	Mar	n-Kendall C	alculation:						
6/18/2009	7.8	1								
6/24/2011	7.2	1	-1							
6/27/2013	7.7	1	-1	1						
6/10/2015	5.6	1	-1	-1	-1					
7/29/2016	4.8	1	-1	-1	-1	-1				
6/28/2018	4.8	1	-1	-1	-1	-1	0			
I	N	6	5	4	3	2	1	0		15
		sum	-5	-2	-3	-2	0	0	Kendall S	-12
I	Possibles	15								

Kendall tau -0.8

Date

7/29/2016

6/28/2018

TCE

4.8

4.8

Raw Data 03L859

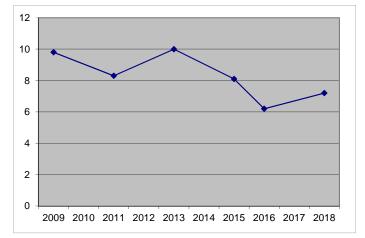
Mean

COV

Trend:

Confidence (lookup)

STNDEV


Date	TCE
11/13/1987	<0.2
12/15/1988	<0.2
	-
4/30/1990	<0.5
3/19/1991	<0.5
3/20/1992	2.14
3/11/1993	3.5
3/18/1994	2.98
6/9/1994	6.27
9/14/1994	5.67 D
9/14/1994	5.67
12/7/1994	4.75
3/10/1995	4.55
6/3/1996	5.96
6/4/1997	2.86
6/1/2004	10
6/22/2005	8.9
6/21/2007	9
6/18/2009	7.8
6/24/2011	7.2
6/27/2013	7.7
6/10/2015	5.6

WELL 04U854 MANN-KENDALL STATISTICAL ANALYSIS OU3 - 2016

Date	TCE (µg/l)	Mar	n-Kendall C	alculation:						
6/18/2009	9.8	1								
6/23/2011	8.3	1	-1							
6/25/2013	10	1	1	1						
6/11/2015	8.1	1	-1	-1	-1					
7/28/2016	6.2	1	-1	-1	-1	-1				
6/28/2018	7.2	1	-1	-1	-1	-1	1			
			_							
ſ	N	6	5	4	3	2	1	0		15
		sum	-3	-2	-3	-2	1	0	Kendall S	-9
F	Possibles	15								

Kendall tau -0.6

Mean STNDEV	8.27 1.4692	
COV	0.1777	
Trend:		Negative
Confidence (lookup)		93.20%

Raw Data
04U854

Date	TCE
10/20/1987	48.4
11/13/1987	50.7
12/16/1988	140
5/4/1989	27.3
7/20/1989	360
10/17/1989	89
4/30/1990	67
3/13/1992	83
3/15/1993	70
6/8/1994	35.3
9/14/1994	36.6
12/7/1994	32
3/9/1995	25
6/4/1996	26.7
6/5/1997	17.6 D
6/5/1997	16.5
6/1/2004	<1.0 D
6/1/2004	14
6/23/2005	11
6/21/2007	11
6/18/2009	9.8

Date	TCE
6/23/2011	8.3
6/25/2013	10
6/11/2015	8.1
7/28/2016	6.2
7/28/2016	6.0 D
6/28/2018	7.2

PIKA Arcadis U.S., Inc. (JV)

123 North Third Street Suite 705 Minneapolis, Minnesota 55401 Tel 612 339 9434 Fax 612 336 4538